
	48      ;login:  Vol.  36,  No.  6   

The vast majority of the columns we’ve spent together so far have focused on how 
to improve your life within the bubble of the programming experience. We’ve 
looked at tools to make programming easier, more efficient, perhaps even a little 
more fun. For this column, let’s try something different and bust out of our usual 
snow globe. We’re going to look at three ways we can call out to Perl or Perl-based 
tools from within the editor we are using to improve our lives. So still Perl, but 
perhaps a little bit more at the periphery than before.

Reflowing and Reformatting Text

Once upon a time, Damian Conway, one of the leading lights of the Perl community, 
decided he didn’t like any of the existing tools for reformatting and reflowing plain 
text. They couldn’t handle bulleted lists, indentation, quoting, embedded struc-
tures like lists within quoted text, and so on. Or if they handled them, they didn’t 
handle all of them simultaneously. As the documentation for the module we are 
about to see notes, if you take this sample text:

In comp.lang.perl.misc you wrote:

: > <CN = Clooless Noobie> writes:

: > CN> PERL sux because:

: > CN>    * It doesn’t have a switch statement and you have to put $

: > CN>signs in front of everything

: > CN>    * There are too many OR operators: having |, || and ‘or’

: > CN>operators is confusing

: > CN>    * VB rools, yeah!!!!!!!!!

: > CN> So anyway, how can I stop reloads on a web page?

: > CN> Email replies only, thanks - I don’t read this newsgroup.

: >

: > Begone, sirrah! You are a pathetic, Bill-loving, microcephalic

: > script-infant.

: Sheesh, what’s with this group - ask a question, get toasted! And how

: *dare* you accuse me of Ianuphilia!

and run it through the UNIX fmt tool (or even the Perl module Text::Wrap), you get 
this:

In comp.lang.perl.misc you wrote:  : > <CN = Clooless Noobie> writes:  : > CN> 

PERL sux because:  : > CN>    * It doesn’t have a switch statement and you 

have to put $ : > CN>signs in front of everything : > CN>    * There are too 

ColumnsPractical Perl Tools
From the Editor

D a v i d  N .  B l a n k - E d e l m a n

David N. Blank-Edelman is 

the director of technology at 

the Northeastern University 

College of Computer and 

Information Science and the author of the 

O’Reilly book Automating System Administration 

with Perl (the second edition of the Otter 

book), available at purveyors of fine dead 

trees everywhere. He has spent the past 24+ 

years as a system/network administrator in 

large multi-platform environments, including 

Brandeis University, Cambridge Technology 

Group, and the MIT Media Laboratory. He was 

the program chair of the LISA ’05 conference 

and one of the LISA ’06 Invited Talks co-chairs. 

David is honored to have been the recipient 

of the 2009 SAGE Outstanding Achievement 

Award and to serve on the USENIX Board of 

Directors beginning in June of 2010.  

dnb@ccs.neu.edu



	 ;login:  december 2011   Practical Perl Tools: From the Editor      49

many OR operators: having |, || and ‘or’ : > CN>operators is confusing : > CN>    

* VB rools, yeah!!!!!!!!!  : > CN> So anyway, how can I stop reloads on a web 

page?  : > CN> Email replies only, thanks - I don’t read this newsgroup.  : > 

: > Begone, sirrah! You are a pathetic, Bill-loving, microcephalic : > script-

infant.  : Sheesh, what’s with this group - ask a question, get toasted! And 

how : *dare* you accuse me of Ianuphilia!

Not exactly an improvement. Conway decided to write a Perl module that would 
grok all of these things, and so the modules Text::Autoformat and Text::Reform 
were born. Text::Autoformat tries to determine the various structures found in 
text and then call Text::Reform to reformat them in a pleasing fashion. How pleas-
ing? Here are the results when we run them on our sample text above:

In comp.lang.perl.misc you wrote:

: > <CN = Clooless Noobie> writes:

: > CN> PERL sux because:

: > CN>	 *	It doesn’t have a switch statement and you

: > CN>		  have to put $ signs in front of everything

: > CN>	 *	There are too many OR operators: having |, ||

: > CN>		  and ‘or’ operators is confusing

: > CN>	 *	VB rools, yeah!!!!!!!!! So anyway, how can I

: > CN>		  stop reloads on a web page? Email replies

: > CN>		  only, thanks - I don’t read this newsgroup.

: >

: > Begone, sirrah! You are a pathetic, Bill-loving,

: > microcephalic script-infant.

: Sheesh, what’s with this group - ask a question, get toasted!

: And how *dare* you accuse me of Ianuphilia!

When Conway wrote the Text::Autoformat module, I believe his main desire was 
not to call it from within a larger Perl program, but, rather, to let it be used more 
handily from your favorite text editor of choice. To do that, you need to pass the 
text you want to reformat out of your text editor into an invocation of the Perl 
interpreter that looks like this:

perl -MText::Autoformat -e “{autoformat{all=>1,right=>75};}”

To break this down, it says:

	 - load the Text::Autoformat module
	 - then call the autoformat subroutine with the following options:

		  all = 1 to instruct the module to reformat all of the text (vs. just the first  
	 paragraph)

		  right = 75 to instruct the module to reformat things with a right margin of 75

I use that command all the time from within a TextMate macro (for example, on 
the very text you are reading), but you could map a key in vim to do the same thing:

map <C-J> !G perl -MText::Autoformat -e “{autoformat{all=>0,right=>75};}”<cr>

I apologize if this seems obvious, but if you attempt to run a command like this 
in vim (or another editor), and instead of returning nicely reformatted text, your 
original paragraph is replaced with something that looks like this:

Can’t locate Text/Autoformat.pm in @INC (@INC contains: 

/opt/local/lib/perl5/site_perl/5.14.1/darwin-multi-2level 



	50      ;login:  Vol.  36,  No.  6   

/opt/local/lib/perl5/site_perl/5.14.1 /opt/local/lib/perl5/vendor_perl/5.14.1/

darwin-multi-2level 

/opt/local/lib/perl5/vendor_perl/5.14.1 

/opt/local/lib/perl5/5.14.1/darwin-multi-2level 

/opt/local/lib/perl5/5.14.1 

/opt/local/lib/perl5/site_perl 

/opt/local/lib/perl5/vendor_perl/5.14.0 

/opt/local/lib/perl5/vendor_perl .).

BEGIN failed--compilation aborted.

it means that you will need to install the Text::Autoformat module before you 
can proceed. For those of you who have multiple versions of Perl installed on your 
machine (e.g., because you have both the Perl that ships with the system and the 
one you installed through MacPorts/Homebrew/Fink), sometimes you will find 
you will get this message because your editor configuration is picking up the wrong 
Perl (the one without Text::Autoformat installed in its @INC) from your path. An 
easy fix is to change the command being run to include a full path to the right Perl 
interpreter (e.g., /opt/local/bin/perl -MText::Autoformat... ).

Tidy Your Lousy Code

Although we are not actually doing any programming in this column, this seems 
like a natural place to point out two other tools that can be called from an editor to 
improve the programming process. Both of these have made at least one appear-
ance in this column, but I love them too much not to mention them again: Perl::Tidy 
and Perl::Critic. Both of these things are modules designed to work on Perl code 
and both come with a script that runs on the command line.

In the case of Perl::Tidy, or, more precisely, when using its accompanying com-
mand-line perltidy, code can get read in from stdin and printed out again in a much, 
much prettier form to stdout. As a demonstration, here’s some sample code found 
embedded in the Perl::Tidy documentation:

use strict;

my @editors=(‘Emacs’, ‘Vi   ‘); my $rand = rand();

print “A poll of 10 random programmers gave these results:\n”;

foreach(0..10) {

my $i=int ($rand+rand());

print “ $editors[$i] users are from Venus” . “, “ . 

“$editors[1-$i] users are from Mars” . 

“\n”;

If I run it through perltidy from my editor (the command I call is perltidy -st -q 

$FILENAME, but for vi we could use just :%!perltidy) using some defaults (more on 
that in a moment), I get:

use strict;

my @editors = ( ‘Emacs’, ‘Vi   ‘ );

my $rand = rand();

print “A poll of 10 random programmers gave these results:\n”;

foreach ( 0 .. 10 ) {

	 my $i = int( $rand + rand() );

	 print “ $editors[$i] users are from Venus” . “, “

		  . “$editors[1-$i] users are from Mars” . “\n”;

}



	 ;login:  december 2011   Practical Perl Tools: From the Editor      51

If you look at the difference between the two, there are lots of little cleanups going 
on (e.g., the space around arguments in parenthesis). I realize it is a particularly 
geeky thing to say this, but when I start with code that looks like this:

my %a = �( 

$a => 1, 

$apple => 2, 

$bigapple => 3, 

$verylargeapple => ‘new york’,);

and I turn it into this using a single keystroke:

my %�a = ( 

$a				    => 1, 

$apple				    => 2, 

$bigapple			   => 3, 

$verylargeapple	 => ‘new york’,

);

such that the arrows all line up it is deeply satisfying. If you’ve noticed that all, or 
at least most, of the arrows in this column have lined up over the years, that’s not 
my doing. I have Perl::Tidy to thank. One last note before I move on to Perl::Critic: 
I mentioned running perltidy with defaults. Perl::Tidy has a ton of configurable 
options. Don’t like it if your arrows line up? (Of course you do!) Prefer to leave a 
closing parenthesis at the end of a line of code without wrapping it as above? All of 
these things can be set as options. By default, if you create a .perltidyrc, Perl::Tidy 
will attempt to read it to set your favorite options. At the moment I use the fol-
lowing .perltidyrc file, which was recommended in Conway’s excellent Perl Best 
Practices:

# PBP .perltidyrc file

-l=78	 # Max line width is 78 cols

-i=4	 # Indent level is 4 cols

-ci=4	 # Continuation indent is 4 cols

-st	 # Output to STDOUT

-se	 # Errors to STDERR

-vt=2	 # Maximal vertical tightness

-cti=0	 # No extra indentation for closing brackets

-pt=1	 # Medium parenthesis tightness

-bt=1	 # Medium brace tightness

-sbt=1	 # Medium square bracket tightness

-bbt=1	 # Medium block brace tightness

-nsfs	 # No space before semicolons

-nolq	 # Don’t outdent long quoted strings

-wbb=”% + - * / x != == >= <= =~ < > | & **= += *= &= <<= &&= -= /= |=+ >>= 

||= .= %= ^= x=”  # Break before all operators

(The last line, beginning -wbb, should be all one line.)

If you don’t feel like setting up a .perltidyrc as I did many moons ago when I first 
read the book, you can now use a -pbp argument to perltidy and it will set these 
parameters for you.

The second Perl-based command I mentioned above was perlcritic, installed as 
part of the Perl::Critic module. The mention of Perl Best Practices above is a good 



	52      ;login:  Vol.  36,  No.  6   

segue because that book basically helped spawn Perl::Critic. Perl::Critic is meant 
to analyze Perl code and determine if it is complying with certain policies meant to 
enforce coding best practices. The original rules were based on the Conway book, 
but more have been added over time. Perl::Critic also lets you use add-on modules 
to add all sorts of different policies to the checking process. When it finds anything 
that violates any of these rules it will spit out warning messages. If you would like 
to see examples of these messages, take a peek back at the December 2009 column 
where I first mentioned both Perl::Critic and Perl::Tidy.

These error messages have a similar form to those you might expect to see emit-
ted from another language’s compiler. As a result, most of the editors that offer 
perlcritic integration do so using a variation of their already existing functionality 
that lets a user try to compile code from within the editor (jumping to the lines 
with errors if any are found). There are add-on packages for a number of the more 
popular editors/IDEs, including vim, Emacs, Komodo, Eclipse (within the Eclipse 
Perl Integration project), BBEdit, Padre, and so on.

And You Thought Grep Was Cool

For the last tool that we are going to see which you can integrate into your editor, I 
want to introduce you to three little letters that may significantly improve how you 
find things in your ever-increasing mountain of data: ack. ack is a grep-ish utility 
by Andy Lester. Like grep, it was designed to help you find data within files. It is 
just a bit smarter (okay, a lot smarter). I don’t think I can do any better describing 
why you might want to use it than to quote from the documentation:

Top 10 reasons to use ack instead of grep.
  1. 	 It’s blazingly fast because it only searches the stuff you want searched.
  2. 	 ack is pure Perl, so it runs on Windows just fine. It has no dependencies other 

than Perl 5.
  3. 	 The standalone version uses no non-standard modules, so you can put it in 

your ~/bin without fear.
  4. 	 Searches recursively through directories by default, while ignoring .svn, CVS, 

and other VCS directories. 
Which would you rather type?
$ grep pattern $(find . -type f | grep -v ‘\.svn’)

$ ack pattern

  5. 	 ack ignores most of the crap you don’t want to search:
	 o VCS directories
	 o blib, the Perl build directory
	 o backup files like foo~ and #foo#
	 o binary files, core dumps, etc.
  6. 	 Ignoring .svn directories means that ack is faster than grep for searching 

through trees.
  7. 	 Lets you specify file types to search, as in --perl or --nohtml. Which would you 

rather type?
$ gr�ep pattern $(find . -name ‘*.pl’ -or -name ‘*.pm’ -or -name ‘*.pod’ \ 

| grep -v .svn)

$ ack --perl pattern

	 Note that ack’s --perl also checks the shebang lines of files without suf-
fixes, which the find command will not.



	 ;login:  december 2011   Practical Perl Tools: From the Editor      53

  8. 	 File-filtering capabilities usable without searching with ack -f. This lets you 
create lists of files of a given type.
$ ack -f --perl > all-perl-files

  9. 	 Color highlighting of search results.
10. 	 Uses real Perl regular expressions, not a GNU subset.
11. 	 Allows you to specify output using Perl’s special variables. To find all #include 

files in C programs:
ack --cc ‘#include\s+<(.*)>’ --output ‘$1’ -h

12. 	 Many command-line switches are the same as in GNU grep: 
-w does word-only searching 
-c shows counts per file of matches 
-l gives the filename instead of matching lines 
etc.

13. 	 Command name is 25% fewer characters to type! Save days of free-time! 
Heck, it’s 50% shorter compared to grep -r.

So there you go, 13 of the top 10 reasons why ack may replace grep as a command 
you type on a regular basis. TextMate, Vim, Emacs and other add-ons let you do 
things like conduct fast searches from within the editor and then jump to the 
places in the files where your search text was found.

With that high note, I think we’ll end our exploration of Perl utilities that can be 
called from an editor. If you have a particularly cool example of this sort of thing 
that you use all the time, please write me a note so I can include it in a future col-
umn. Take care, and I’ll see you next time.




