STEPHEN B. JENKINS

Stephen is the senior programmer/analyst at the
Aerodynamics Laboratory of the Institute for
Aerospace Research, National Research Council of
Canada. For more information, see
http://www.erudil.com.

Stephen.Jenkins@nrc-cnrc.gc.ca

AS PROGRAMMERS, WHEN WE NEED
to provide Web-accessible information, two
methods usually come to mind: a static
one—creating Web pages in an editor or
Web development tool, and a dynamic
one—creating CGIl programs to generate
HTML. There is, however, a third, often over-
looked, option: offline programmatic genera-
tion of Web pages (OPG). By OPG, | mean
writing programs to generate HTML docu-
ments at the time and location of your
choosing, as opposed to CGI programs,
where the pages are generated at access
time on the computer hosting the Web
server.

When to Use OPG

While it may appear, at first glance, that OPG has little
to offer over the other two methods, this is not the
case. Its primary advantage is that complex HTML
documents can be quickly and easily modified, with-
out the need for CGI programs. This is an absolute
necessity for people using the services of many of the
largest I1SPs, since those companies typically only pro-
vide a small number of “canned” CGI scripts (e.g.,
formmail) and do not allow user-written programs.

Even if you do have complete access to your Web
server, OPG offers a significant benefit in performance:
Web pages can be generated at times when CPU and
10 loads are low. This can be especially significant for
large Web pages that take a considerable time to gener-
ate, such as log file summaries. Rather than create the
documents on demand, as CGI programs do, the pages
can be generated once (e.g., each night) via a crontab
entry. This is also useful for information that is rarely
modified (staff email address, phone lists, etc.). The
Web pages only need to be generated as often as the
data changes.

The third place that OPG makes sense is for pages con-
taining large/multiple tables of data. Even if the infor-
mation is allegedly unchanging (we've all heard that
before!), creating and modifying large tables by hand
can be tedious and error prone. Also, as programmers,
many of us would rather spend the time writing code
to perform a task rather than do it manually.

One final issue is security. While CGI programs can be
made as secure as any other software on the Net, inex-
perienced coders can inadvertently leave themselves
open to malicious attacks. For the wary (and the

downright paranoid), OPG offers many of the benefits of CGI, while avoiding all
of the potential risks.

A Simple Example

By way of example, I thought I'd show a simplified version of a program | wrote
for my wife, Christine, who gives private music lessons. She needed a way to
display her schedule and to show which lesson times were available to potential
students visiting her Web site. Since her HTML skills are rudimentary and her
ISP has difficulties with custom CGI programs, | decided to write some Perl
code to generate the Web pages on our home computer. When her timetable
changes, Christine modifies the data, double-clicks the program’s icon, and then
uses a graphical FTP program to upload the newly created Web pages to her
service provider.

As so often happens with these kinds of small projects, | decided to add features
after | started writing the program. Rather than just generate a public Web page
showing the available time slots, | decided to have the program also generate a
private page to show such information as the students initials, other musical
commitments, and time off. To keep things as simple and compatible as possi-
ble, I decided to put the schedule information in a “DATA” segment at the end of
the program, and chose not to use external Perl modules or Cascading Style
Sheets (CSS). Figures 1 and 2 show the public and private Web pages generated
by the example program shown in Listing 1.

R e =]

"1 by bl 1 B
- b= [T =] Tos W ia -
E - " = 7 g
rad = LT i
= LT il a1
i JIEV]
ko
ks =
= = - sruldle rvda i
ke T .
= L= d i
=il i]
- a
LU L] i i i
i i i
= i]
x T
|

#1/usr/bin/perl
use strict;
use warnings;

my $title = "Teaching Schedule”;
my $colwidth = "width=75";
my %colorfor = ("bg” => ""#D8E8D8"",

"hddark®" => ""#336666"",

"hdlight® => ""#FFFFFF"",

"choir® => ""#FFCCCC"",

"student® => ""#CCFFCC"",

"avail” => ""#FFE7CC"",

);

my $htmll =<<EOF;
<html><head><title>$title</title></head>
<body bgcolor=$colorfor{"bg"} text=$colorfor{"hddark"}>
<table border=0>
<tr><th colspan=8 bgcolor=$colorfor{"hddark"}>
$title</th></tr>
<tr>

EOF

foreach (gw(Time Mon. Tue. Wed. Thu. Fri. Sat. Sun.)) {
$htmll .= "<th $colwidth bgcolor=$colorfor{"hdlight*}>$ </th>";

}

$htmll .= "</tr>\n"";

my $pri = "";

my $pub = "*;

while(<DATA>) {
next unless /™\d/;

my $time = substr($_, 0, 6, "");
$pri .= "<tr><td bgcolor=$colorfor{"hdlight"} align=\"center\">$time</td>";
$pub .= "<tr><td bgcolor=$colorfor{"hdlight"} align=\"center\">$time</td>";

my @days = /.{1,4}/9;
@days = splice @days, 0, 7;
foreach (@days) {
my $bgc = $colorfor{"avail"};
ifC/N\S/) {
iT(/CJJoff/) { $bgc = $colorfor{"bg"}; 1}
elsif(/C\d/) { $bgc = $colorfor{"choir"}; }

else { $bgc = $colorfor{"student"}; }
$pri .= "<td bgcolor=$bgc align=\"center\'>$_</td>";
$pub .= “<td></td>";
} else {
$pri .= "<td bgcolor=$bgc align=\"center\'>available</td>";
$pub .= "<td bgcolor=$bgc align=\"center\'>available</td>";;
}
}
$pri .= "</tr>\n"";

$pub .= "</tr>\n"";
}
my $html2 = “</table></body></html>\n"";
open PRI, ">private_html™ or die "Oops: $!";
print PRI "$Shtmll1$pri$htmi2\n";

close PRI;
open PUB, ">public.html" or die "Oops: $!";

print PUB "$Shtmll$pub$Shtmi2\n";

close PUB;

__DATA

Time Mon Tue Wed Thu Fri Sat Sun
10:00 CJ off C1
10:30 CJ sSK off C1
11:00 CJ sSK CJ SF off C1
11:30 CJ CcJ off C1
12:00 CJ CJ CcJ off off
12:30 CJ CJ CJ off off
1:00 CcJ CcJ off off
1:30 CcJ off off
2:00 CJ off off
2:30 off off
3:00 SF SJ off off off
3:30 SH SJ off off off
4:00 SE SG SH off off off
4:30 SE SG Sl off off off
5:00 CcJ off off off
5:30 CcJ off off off
6:00 C2 Cl off off off
6:30 C2 SA SD C1 off off off
7:00 C2 SA SD C1 off off off
7:30 C2 SB Cl off off off
8:00 C2 SC Cl off off off
8:30 C2 SC Cl off off off

The first three lines start the program by invoking Perl with the strictand
warnings pragmas. The next nine lines set up some HTML parameters for later
use. After that, a “here document” is used to define the HTML head and title ele-
ments, as well as setting up the beginning of the main table that will hold the
schedule. Next, a foreach statement is used to create the table header entries.
Until this point, the HTML code has been common to both the private and pub-
lic pages, but now we need to define two scalars to hold the HTML elements that
are unique to each.

At this point, I'll jJump down to the end of the program to describe the DATA
segment. It consists of a header line followed by multiple lines of data in a sim-
ple table, one time slot per row and one day per column. Available slots are
expected to be blank, but occupied slots are expected to contain either the string
“off”, a “C” followed by a number for a choir, or a set of initials, set here to “SA”
to “SJ” to denote 10 students or to “CJ” to denote Christine.

A whi le loop reads the rows of the DATA block. Lines that do not begin with a
numerical digit are ignored (to allow for blank, formatting, or comment lines).
The first six characters are removed and are used as the time string for this row
of the HTML table. Next, a regex breaks the rest of the line up into an array of
four-character strings. The @days array is truncated to seven elements, just in
case some extra characters were placed in the data by accident. A foreach loop
examines each day’s entry, and the table cell background color is set to the
“available” color. If the entry contains non-whitespace characters, it is compared
against two regexes to determine the appropriate background color. For the pri-
vate page, the schedule’s data is written into the table cell, but the public page’s
cell is left empty to show an unavailable time slot. If the day’s entry was only
whitespace, the table cells of both private and public pages are set to “available”.
The table row tags are then closed, and the while loop repeats until all of the

10

time periods have been processed. In the final few lines of the program, the
HTML closing tags are added, and the files are written to disk.

Other Examples

I've used OPG several other times in the past year or so; once was for a local
minor hockey league. They wanted to put player statistics (goals, assists, goals
per game, points per game, etc.) on their Web site. | wrote two small Perl pro-
grams: one for the goalie stats and one for the other players. The data comes
from tab-separated text files maintained by one of the league officials. He
updates the data files on his home PC and then runs the programs to calculate
the stats, sort the player rankings, and generate the Web pages. He then uploads
the HTML documents to the league Web server.

As part of my job at the Aerodynamics Laboratory, I've created an event-logging
system that receives and records software events from a number of independent
computers and stores them in a log file similar to the type used by the Apache
Web server [Jenkins]. In order to provide an executive summary of the events
that occurred during the previous day, week, month, etc., | wrote a Perl program
that reads and analyzes the log files, then generates two Web pages each day: a
daily summary and an index of all of the available daily summaries. Since this
program can take several minutes to run, and heavily exercises the hard drives,
I didn't want it to run on-demand as a CGI would. Instead, | set up a crontab
entry to run the process daily (shortly after midnight) and place the output
pages in a Web-accessible location.

For a final example, I'd like to talk about three somewhat more complex pro-
grams that | wrote for the Fifth International Colloquium on Bluff Body Aerody-
namics & Applications (BBAA V). As anyone who's ever been on the organizing
committee for a conference will tell you, many of the meeting details (the list of
papers, the paper titles, the authors, and the program schedule, just to name a
few) are far from static. | wrote Perl programs to take information from the
master “database” (an Excel spreadsheet that | read using Spreadsheet: :
ParseExcel : :Simple) and generate a list of presentations by topic, an
author’s index, and the daily program schedules (see Figure 3 for a facsimile).

g e [[
o |

= rer——

= [T T

n= o ey

e L=
B T U S R
= it

Tona

=T e Wk [Ty

=

-

B — M
[y -

TEI T W T T T e

As new information arrives, the conference administrative assistant updates the
spreadsheet and forwards me a copy via email. Within minutes, | can run my
programs, update the Web site, and reply that the changes have been made pub-
lic.

Concluding Remarks

One of the beauties of such a simple concept is that it is completely OS-, Web
server-, and Web browser-independent. While OPG is also independent of
implementation language, it definitely works best with a language such as Perl,
which was designed to manipulate text. Perl also has many other benefits such
as low/no cost (open source), portability (available for most modern OSes), easy
access to databases through DBI, and a large, freely available archive of modules
in CPAN.

For me, the best things about offline programmatic generation are summed up
in the first two of the three great virtues of a programmer: laziness and impa-
tience. It enables me to be lazy because with only a few hours’ work, | can write
a program that enables nonprogrammers to maintain their complex Web pages,
putting the responsibility on them. It enables those users to be impatient
because rather than wait for someone else to update a Web site, they can do it
themselves, immediately. If necessary for the most naive users, | could even
automate the FTP process using Net: : FTP. This means that to modify their
Web site, they would only have to update their text files, Excel spreadsheets, or
database entries, and double-click a desktop icon on their PCs.

REFERENCE

Jenkins, S.B., “A Web-Based Environment to Support Aerodynamic Testing,” IEEE Aero-
space and Electronic Systems Magazine 19:1 (January 2004), p. 3.

1

