
8

The FreeBSD access control mechanism is designed for an environment with
two types of users: those with and those without administrative privilege. It
is often desirable to delegate some but not all administrative functions to
untrusted or less trusted parties and simultaneously impose system-wide
mandatory policies on process interaction and sharing. Historically, attempt-
ing to create such an environment has been both difficult and costly. The
primary mechanism for partial delegation of administrative authority is to
write a set-user-identifier program that carefully controls which of the
administrative privileges may be used. These set-user-identifier programs
are complex to write, difficult to maintain, limited in their flexibility, and
prone to bugs that allow undesired administrative privilege to be gained.

Many operating systems attempt to address these limitations by providing fine-grained
access controls for system resources [P1003.1e, 1998]. These efforts vary in degrees of
success, but almost all suffer from at least three serious limitations:

1. Increasing the granularity of security controls increases the complexity of the
administration process, in turn increasing both the opportunity for incorrect
configuration, as well as the demand on administrator time and resources. Often
the increased complexity results in significant frustration for the administrator,
which may result in two disastrous types of policy: running with security features
disabled and running with the default configuration on the assumption that it
will be secure.

2. Usefully segregating capabilities and assigning them to running code and users is
difficult. Many privileged operations in FreeBSD seem independent but are inter-
related. The handing out of one privilege may be transitive to many others. For
example, the ability to mount file systems allows new set-user-identifier pro-
grams to be made available that in turn may yield other unintended security
capabilities.

3. Introducing new security features often involves introducing new security man-
agement interfaces. When fine-grained capabilities are introduced to replace the
set-user-identifier mechanism in FreeBSD, applications that previously did an
appropriateness check to see if they were running with superuser privilege before
executing must now be changed to know that they need not run with superuser
privilege. For applications running with privilege and executing other programs,
there is now a new set of privileges that must be voluntarily given up before exe-
cuting another program. These changes can introduce significant incompatibility
for existing applications and make life more difficult for application developers
who may not be aware of differing security semantics on different systems.

This abstract risk becomes more clear when applied to a practical real-world example:
Many Web service providers use FreeBSD to host customer Web sites. These providers
must protect the integrity and confidentiality of their own files and services from their
customers. They must also protect the files and services of one customer from (acci-
dental or intentional) access by any other customer. A provider would like to supply

the jail facility in
FreeBSD 5.2

[Editor’s note: This article is a partial excerpt
from Chapter 4, “Process Management,” from
The Design and Implementation of the FreeBSD
Operating System, by Marshall Kirk McKusick
and George Neville-Neil. Reprinted with per-
mission from Pearson Education, Inc. (0-201-
70245-2). Copyright 2005. To learn more:
http://www.awprofessional.com/
title/0201702452.]

Vol. 29, No.4 ;login:

by Kirk McKusick
Dr. Marshall Kirk McKu-
sick writes books and
articles, consults, and
teaches classes on
UNIX- and BSD-related
subjects. He has twice
served on the Board and
as president of USENIX.
mckusick@
mckusick.com

substantial autonomy to customers, allowing them to install and maintain their own
software and to manage their own services, such as Web servers and other content-
related daemon programs.

This problem space points strongly in the direction of a partitioning solution. By put-
ting each customer in a separate partition, customers are isolated from accidental or
intentional modification of data or disclosure of process information from customers
in other partitions. Delegation of management functions within the system must be
possible without violating the integrity and privacy protection between partitions.

FreeBSD-style access control makes it notoriously difficult to compartmentalize func-
tionality. While mechanisms such as chroot provide a modest level of compartmental-
ization, this mechanism has serious shortcomings, both in the scope of its
functionality and the effectiveness of what it provides. The chroot system call was first
added to provide an alternate build environment for the system. It was later adapted to
isolate anonymous FTP access to the system.

The original intent of chroot was not to ensure security. Even when used to provide
security for anonymous FTP, the set of operations allowed by FTP was carefully con-
trolled to prevent those that allowed escape from the chrooted environment.

Three classes of escape from the confines of a chroot-created file system were identi-
fied over the years:

1. Recursive chroot escapes

2. Escapes using ..

3. Escapes using fchdir

All these escapes exploited the lack of enforcement of the new root directory.

Two changes to chroot were made to detect and thwart these escapes. To prevent the
first two escapes, the directory of the first level of chroot experienced by a process is
recorded. Any attempts to traverse backward across this directory are refused. The
third escape, using fchdir, is prevented by having the chroot system call fail if the
process has any file descriptors open referencing directories.

Even with stronger semantics, the chroot system call is insufficient to provide complete
partitioning. Its compartmentalization does not extend to the process or networking
spaces. Therefore, both observation of and interference with processes outside their
compartment is possible. To provide a secure virtual machine environment, FreeBSD
added a new “jail” facility built on top of chroot. Processes in a jail are provided full
access to the files that they may manipulate, processes they may influence, and net-
work services they may use. They are denied access to and visibility of files, processes,
and network services outside their jail [Kamp & Watson, 2000].

Unlike other fine-grained security solutions, a jail doesn’t substantially increase the
policy management requirements for the system administrator. Each jail is a virtual
FreeBSD environment that permits local policy to be independently managed. The
environment within a jail has the same properties as the host system. Thus, a jail envi-
ronment is familiar to the administrator and compatible with applications [Hope,

9August 2004 ;login: JAIL IN FREEBSD 5.2 ●

●

SY

SA
D

M
IN

Vol. 29, No. 4 ;login:

2002].

Jail Semantics
Two important goals of the jail implementation are to:

1. Retain the semantics of the existing discretionary access-control mechanisms.

2. Allow each jail to have its own superuser administrator whose activities are lim-
ited to the processes, files, and network associated with its jail.

The first goal retains compatibility with most applications. The second goal permits
the administrator of a FreeBSD machine to partition the host into separate jails and
provide access to the superuser account in each of these jails without losing control of
the host environment.

A process in a partition is referred to as being “in jail.” When FreeBSD first boots, no
processes will be jailed. Jails are created when a privileged process calls the jail system
call with arguments of the file system into which it should chroot and the IP address
and hostname to be associated with the jail. The process that creates the jail will be the
first and only process placed in the jail. Any future descendants of the jailed process
will be in its jail. A process may never leave a jail that it created or in which it was cre-
ated. Any given process may be in only one jail. The only way for a new process to
enter the jail is by inheriting access to the jail from another process already in that jail.

Each jail is bound to a single IP address. Processes within the jail may not make use of
any other IP address for outgoing or incoming connections. A jail has the ability to
restrict the set of network services that it chooses to offer at its address. An application
request to bind all IP addresses is redirected to the individual address associated with
the jail in which the requesting process is running.

A jail takes advantage of the existing chroot behavior to limit access to the file system
namespace for jailed processes. When a jail is created, it is bound to a particular file-
system root. Processes are unable to manipulate files that they cannot address. Thus,
the integrity and confidentiality of files outside the jail file-system root are protected.

Processes within the jail will find that they are unable to interact or even verify the
existence of processes outside the jail. Processes within the jail are prevented from
delivering signals to processes outside the jail, connecting to processes outside the jail
with debuggers, or even seeing processes outside the jail with the usual system-moni-
toring mechanisms. Jails do not prevent, nor are they intended to prevent, the use of
covert channels or communications mechanisms via accepted interfaces. For example,
two processes in different jails may communicate via sockets over the network. Jails do
not attempt to provide scheduling services based on the partition.

Jailed processes are subject to the normal restrictions present for any processes includ-
ing resource limits and limits placed by the network code, including firewall rules. By
specifying firewall rules for the IP address bound to a jail, it is possible to place con-
nectivity and bandwidth limitations on that jail, restricting the services that it may
consume or offer.

The jail environment is a subset of the host environment. The jail file system appears
as part of the host file system and may be directly modified by processes in the host
environment. Processes within the jail appear in the process listing of the host and
may be signaled or debugged.

The administrator of a
FreeBSD machine [can] parti-
tion the host into separate
jails and provide access to the
superuser account in each of
these jails without losing con-
trol of the host environment.

10

Processes running without superuser privileges will notice few differences between a
jailed environment and an unjailed environment. Standard system services such as
remote login and mail servers behave normally, as do most third-party applications,
including the popular Apache Web server. Processes running with superuser privileges
will find that many restrictions apply to the privileged calls they may make. Most of
the limitations are designed to restrict activities that would affect resources outside the
jail. These restrictions include prohibitions against the following:

■ Modifying the running kernel by direct access or loading kernel modules.
■ Mounting and unmounting file systems.
■ Creating device nodes.
■ Modifying kernel runtime parameters such as most sysctl settings.
■ Changing security-level flags.
■ Modifying any of the network configuration, interfaces, addresses, and routing-

table entries.
■ Accessing raw, divert, or routing sockets. These restrictions prevent access to facil-

ities that allow spoofing of IP numbers or the generation of disruptive traffic.
■ Accessing network resources not associated with the jail. Specifically, an attempt

to bind a reserved port number on all available addresses will result in binding
only the address associated with the jail.

■ Administrative actions that would affect the host system, such as rebooting.

Other privileged activities are permitted as long as they are limited to the scope of the
jail:

■ Signaling any process within the jail is permitted.
■ Deleting or changing the ownership and mode of any file within the jail is permit-

ted, as long as the file flags permit the requested change.
■ The superuser may read a file owned by any UID, as long as it is accessible

through the jail file system namespace.
■ Binding reserved TCP and UDP port numbers on the jail’s IP address is permit-

ted.

These restrictions on superuser access limit the scope of processes running with super-
user privileges, enabling most applications to run unhindered but preventing calls that
might allow an application to reach beyond the jail and influence other processes or
system-wide configuration.

Jail Implementation
The implementation of the jail system call is straightforward. A prison data structure
is allocated and populated with the arguments provided. The prison structure is linked
to the process structure of the calling process. The prison structure’s reference count is
set to one, and the chroot system call is called to set the jail’s root. The prison structure
may not be modified once it is created.

Hooks in the code implementing process creation and destruction maintain the refer-
ence count on the prison structure and free it when the last reference is released. Any
new processes created by a process in a jail will inherit a reference to the prison struc-
ture, which puts the new process in the same jail.

Some changes were needed to restrict process visibility and interaction. The kernel
interfaces that report running processes were modified to report only the processes in
the same jail as the process requesting the process information. Determining whether

11August 2004 ;login: JAIL IN FREEBSD 5.2 ●

●

SY

SA
D

M
IN

Vol. 29, No. 4 ;login:

one process may send a signal to another is based on UID and GID values of the send-
ing and receiving processes. With jails, the kernel adds the requirement that if the
sending process is jailed, then the receiving process must be in the same jail.

Several changes were added to the networking implementation:

■ Restricting TCP and UDP access to just one IP number was done almost entirely
in the code that manages protocol control blocks. When a jailed process binds to a
socket, the IP number provided by the process will not be used; instead, the pre-
configured IP number of the jail is used.

■ The loop-back interface, which has the magic IP number 127.0.0.1, is used by
processes to contact servers on the local machine. When a process running in a jail
connects to the 127.0.0.1 address, the kernel must intercept and redirect the con-
nection request to the IP address associated with the jail.

■ The interfaces through which the network configuration and connection state
may be queried were modified to report only information relevant to the config-
ured IP number of a jailed process.

Device drivers for shared devices such as the pseudo-terminal driver needed to be
changed to enforce the restriction that a particular virtual terminal cannot be accessed
from more than one jail at the same time.

The simplest but most tedious change was to audit the entire kernel for places that
allowed the superuser extra privilege. Only about 35 of the 300 checks in FreeBSD 5.0
were opened to jailed processes running with superuser privileges. Since the default is
that jailed superusers do not receive privilege, new code or drivers are automatically
jail-aware: They will refuse jailed superusers privilege.

Jail Limitations
As it stands, the jail code provides a strict subset of system resources to the jail envi-
ronment, based on access to processes, files, network resources, and privileged services.
Making the jail environment appear to be a fully functional FreeBSD system allows
maximum application support and the ability to offer a wide range of services within a
jail environment. However, there are limitations in the current implementation.
Removing these limitations will enhance the ability to offer services in a jail environ-
ment. Three areas that deserve greater attention are the set of available network
resources, management of scheduling resources, and support for orderly jail shut-
down.

Currently, only a single IP version 4 address may be allocated to each jail, and all com-
munication from the jail is limited to that IP address. It would be desirable to support
multiple addresses or possibly different address families for each jail. Access to raw
sockets is currently prohibited, as the current implementation of raw sockets allows
access to raw IP packets associated with all interfaces. Limiting the scope of the raw
socket would allow its safe use within a jail, thus allowing the use of ping and other
network debugging and evaluation tools.

Another area of great interest to the current users of the jail code is the ability to limit
the effect of one jail on the CPU resources available for other jails. Specifically, they
require that the system have ways to allocate scheduling resources among the groups of
processes in each of the jails. Work in the area of lottery scheduling might be leveraged
to allow some degree of partitioning between jail environments [Petrou & Milford,
1997].

Making the jail environment
appear to be a fully func-
tional FreeBSD system allows
maximum application support
and the ability to offer a wide
range of services within a jail
environment.

12

Management of jail environments is currently somewhat ad hoc. Creating and starting
jails is a well-documented procedure, but jail shutdown requires the identification and
killing of all the processes running within the jail. One approach to cleaning up this
interface would be to assign a unique jail-identifier at jail creation time. A new jailkill
system call would permit the direction of signals to specific jail-identifiers, allowing
for the effective termination of all processes in the jail. FreeBSD makes use of an init
process to bring the system up during the boot process and to assist in shutdown. A
similarly operating process, jailinit, running in each jail would present a central loca-
tion for delivering management requests to its jail from the host environment or from
within the jail. The jailinit process would coordinate the clean shutdown of the jail
before resorting to terminating processes, in the same style as the host environment
shutting down before killing all processes and halting the kernel.

References
Hope, P. 2002. “Using Jails in FreeBSD for Fun and Profit,” ;login:, vol. 27, no. 3, pp.
48–55, http://www.usenix.org/publications/login/2002-06/pdfs/hope.pdf, USENIX Asso-
ciation, Berkeley, CA (June 2002).

Kamp, P. & R. Watson. 2000. “Jails: Confining the Omnipotent Root,” Proceedings of the
Second International System Administration and Networking Conference (SANE),
http://docs.freebsd.org/44doc/papers/jail/ (May 2000).

P1003.1e. 1998. Unpublished Draft Standard for Information Technology—Portable
Operating System Interface (POSIX)—Part 1: System Application Program Inter-
face—Amendment: Protection, Audit and Control Interfaces [C Language] IEEE Stan-
dard 1003.1e Draft 17, ed. Casey Schaufler, Institute of Electrical and Electronic
Engineers, Piscataway, NJ (1998).

Petrou, D. & J. Milford. 1997. Proportional-Share Scheduling: Implementation and
Evaluation in a Widely Deployed Operating System, http://www.cs.cmu.edu/
~dpetrou/papers/freebsd_lottery_writeup98.ps and http://www.cs.cmu.edu/
~dpetrou/code/freebsd_lottery_code.tar.gz (1997).

13August 2004 ;login: JAIL IN FREEBSD 5.2 ●

●

SY

SA
D

M
IN

