
42    F eb rua ry 20 14  Vo l . 3 9, N o. 1 	 www.usenix.org

Columns

The Wheels Keep on Spinning
D a v i d Be a z l e y

If you’ve ever had the pleasure of installing third-party Python packages,
you already know that it can be a bit of a mess. There are a variety of
different tools, file formats, and other packaging complications. Frankly,

it’s enough to make your head spin.

Over the past year, a new Python packaging format has emerged in the form of a “wheel”
file—so named because a wheel is a common packaging form factor for cheese, as in the big
wheel of cheese that you might find at a cheese shop. Naturally, this is a reference to a certain
cheese shop in an obscure Monty Python sketch, but that should have been obvious. I digress.

When the new wheel format emerged, I’ll admit that I mostly ignored it. Python packaging
is not my favorite topic, and the thought of having to think about yet another file format was
relatively low on my list of day-to-day priorities; however, in recent months there has been
a concerted effort to have package maintainers support the new wheel format. For example,
the Web site http://pythonwheels.com/ currently shows the wheel status for the most popu-
lar Python extensions. As the author of one such extension, I was starting to get questions
about wheels and was ashamed to admit my ignorance.

So, what in the heck is a wheel, you ask? In this installment, we’ll take a look at wheels,
Python packaging, and related topics. As we’ll see, there are some rather interesting
aspects to wheels—especially for anyone who needs to maintain, test, or deploy complex
Python applications.

A Quick Review of Python Packaging
Before jumping into the subject of wheels, a quick refresher on Python packaging is probably
in order. First, the Python Package Index (PyPI, at http://pypi.python.org) is the definitive
site for locating and downloading third-party packages. If you go here, you’ll find virtually all
available packages listed, along with links to downloads, documentation, and more.

If you want to, you can download a package directly from PyPI and install it manually on
your machine. Typically you would download the source and look for an enclosed setup.py
file. You would then run python setup.py install on that file to perform an installation. For
example, if you wanted to download the pytz extension for handling time zones, here are the
steps that you might perform. In this example, replace the curl command with anything that
simply downloads the source from PyPI. Also, depending on how Python has been installed,
the final step might need to be performed as root using sudo.

bash % curl -O https://pypi.python.org/packages/source/p/pytz/pytz-2013.8.tar.gz

bash % tar -xf pytz-2013.8.tar.gz

bash % cd pytz-2013.8

bash % python setup.py install

David Beazley is an open source
developer and author of the
Python Essential Reference (4th
Edition, Addison-Wesley, 2009)

and Python Cookbook (3rd Edition, O’Reilly
Media, 2013). He is also known as the creator
of Swig (http://www.swig.org) and Python
Lex-Yacc (http://www.dabeaz.com/ply.html).
Beazley is based in Chicago, where he also
teaches a variety of Python courses.
http://www.dabeaz.com, dave@dabeaz.com

www.usenix.org	   F eb rua ry 20 14  Vo l . 3 9, N o. 1  43

COLUMNS
The Wheels Keep on Spinning

Instead of manually installing a package in this manner, an
alternative approach is to use the optional setuptools package.
setuptools gives you the easy_install command, which auto-
matically contacts PyPI, downloads the most recent version,
and installs it for you. For example, instead of typing the above
commands, you could simply type the following statement
(again, you may need to use sudo depending on your Python
installation):

bash % easy_install pytz

setuptools saves you the trouble of downloading, unpacking,
and running the setup.py file yourself; however, it does quite a
bit more than that because it will also download and install any
dependencies. This can be useful if you’re installing something
much more complicated. For example, if you wanted to install
the Python data analysis library pandas (http://pandas.pydata.
org/), typing easy_install pandas will not only install pandas
but also all of its dependencies, including numpy, python-dateu-
til, six, and pytz.

Although easy_install is commonly described in tutorials and
documentation, the pip command (http://www.pip-installer.org)
is a bit more modern, performs a similar function, and seems to
be coming the preferred way to install packages. pip operates in
a manner similar to easy_install. For example, to install a pack-
age, type a command like this:

bash % pip install pandas

Under the covers, pip actually requires the use of setuptools, so
if you’re using it, you’ll actually have both easy_install and pip
installed. This obviously begs the question: What is the major
difference between the two? That’s a big question, but pip makes
a number of subtle changes to the installation process. For
example, pip downloads all of the dependencies and builds them
completely before attempting any kind of install. As a result,
the install will either succeed in its entirety or not at all. On
the other hand, easy_install might end up performing a partial
install if some part of the installation process fails midway
through. pip also provides some additional commands, such as
the ability to uninstall a package.

Perhaps the most notable feature of pip is its ability to “freeze”
and recreate your exact installation configuration. For example,
suppose you had spent a lot of time making a custom Python
setup. You can type the following command to freeze it into a
requirements file:

bash % pip freeze >requirements.txt

This creates a file requirements.txt that looks like this:

Django==1.6

SQLAlchemy==0.8.3

numpy==1.8.0

pandas==0.12.0

ply==3.4

python-dateutil==2.2

pytz==2013.8

requests==2.0.1

six==1.4.1

virtualenv==1.10.1

wsgiref==0.1.2

Now, suppose you were setting up a new Python installation or
performing a deployment to a new machine. If you wanted to
recreate your environment, you could simply type the following:

bash % pip install -r requirements.txt

This will download, build, and install everything in require-
ments.txt for you—very nice.

Virtual Environments and Deployments
Once you’ve mastered the basics of installing packages, you
might think that it’s the end of the story. After all, how many
times are you actually going to sit around installing packages?
As it turns out, it might be a lot more often than you think.

One of the more popular extensions to Python is the virtualenv
tool (https://pypi.python.org/pypi/virtualenv). virtualenv allows
you to make entirely new Python environments for working on
new versions of code, experimentation, and testing things out. To
make a new virtual environment, simply type the following:

bash % virtualenv spam

This creates a new directory spam/ in which you will find a new
Python installation. This installation is actually a “blank slate”
of sorts. The directory spam/bin includes Python as well as
easy_install, pip, and virtualenv. No other third-party extensions
are included. But that’s the whole idea—with a virtual environ-
ment you get to start over.

Not to worry! Remember the requirements.py file you just cre-
ated with pip? Let’s recreate our setup in the new virtual envi-
ronment with a single command:

bash % spam/bin/pip install -r requirements.txt

This will churn away for a while, but when it’s done, you’ll have
a brand new Python environment with everything installed.
Because it’s an isolated environment, you can continue to experi-
ment with the setup without breaking the default Python instal-
lation on your machine.

Naturally, a similar process can be used if you’re deploying a
Python application to new machines or to workers out on the
cloud. Simply make sure you distribute the requirements.txt file
and use it to recreate the environment when you need it.

44    F eb rua ry 20 14  Vo l . 3 9, N o. 1 	 www.usenix.org

Columns
The Wheels Keep on Spinning

A Performance Headache
If you’ve made it this far, you will have made recreating your
Python environment easy; it all works fine except for one huge
headache, which is the performance of it all. When you type the
command pip install -r requirements.txt, all of the required
packages will be downloaded, compiled, and installed from
source. Although there are ways to cache the source locally and
avoid the download step, the compilation and installation pro-
cess can take a substantial amount of time. For example, install-
ing a new environment from the requirements.txt file shown
here takes a little more than nine minutes on my machine. Much
of that time is spent running the C compiler for the numpy and
pandas extensions.

Although that might not seem like much time, it can add up
quickly if you find yourself making many virtual environments
or recreating the Python environment as part of a deployment
script. Surely there should be some way to perform a binary
installation from pre-built packages instead. Wouldn’t that be
much faster? Yes, it would.

Enter Wheels
The newly introduced “wheel” standard is an effort to solve this
problem. In a nutshell, a wheel is simply a pre-built Python pack-
age. Because it’s pre-built, none of the usual source compilation
steps are necessary. Instead, all of its contents can simply be
copied into place.

To see how wheel works, you first must install the separate
wheel package. Just use pip:

bash % pip install wheel

Next, let’s make a special directory for our wheels:

bash % mkdir /tmp/wheels

Once you’re done with that, type the following command using
the requirements.txt file from earlier:

bash % pip wheel --wheel-dir=/tmp/wheels -r requirements.txt

This command will churn away for a while, but when it’s done,
the /tmp/wheels directory will contain a collection of .whl files
like this:

bash % ls /tmp/wheels

Django-1.6-py2.py3-none-any.whl

SQLAlchemy-0.8.3-cp27-none-macosx_10_4_x86_64.whl

numpy-1.8.0-cp27-none-macosx_10_4_x86_64.whl

pandas-0.12.0-cp27-none-macosx_10_4_x86_64.whl

ply-3.4-py27-none-any.whl

python_dateutil-2.2-py27-none-any.whl

pytz-2013.8-py27-none-any.whl

requests-2.0.1-py27-none-any.whl

six-1.4.1-py27-none-any.whl

virtualenv-1.10.1-py27-none-any.whl

wsgiref-0.1.2-py27-none-any.whl

Okay, that’s interesting, but what’s the point, you ask? The real
benefit comes when you later want to recreate your Python envi-
ronment. Using the wheels directory as a kind of cache, type the
following commands to make a new virtual environment:

bash % virtualenv spam2

bash % spam2/bin/pip install --use-wheel --no-index --find-

links=/tmp/wheels -r requirements.txt

This will completely recreate your Python environment exactly
as before; however, instead of taking nine more minutes, it now
only takes four seconds. That’s a speedup of about 13,500%,
in case you were keeping track. Needless to say, this ability
to almost instantly recreate your Python environment on a
moment’s notice is interesting.

Under the Covers
The gory details of what’s going on inside a wheel file can be
found in PEP 427 (http://www.python.org/dev/peps/pep-0427).
To be honest, this document mostly made my head hurt, and it did
not fully illuminate the big idea at work. Thus, here are the big pic-
ture details that you might care to know. A .whl file is simply a .zip
file containing the compiled/built package. Everything needed
to make the package work is contained inside. For example:

bash % unzip -l ply-3.4-py27-none-any.whl

Archive: ply-3.4-py27-none-any.whl

	 Length	 Date	 Time	 Name

 --------- 	 ----- 	 ----- 	 -----

	 82	 11-25-13	 12:02	 ply/__init__.py

	 33040	 11-25-13	 12:02	 ply/cpp.py

	 3170	 11-25-13	 12:02	 ply/ctokens.py

	 40739	 11-25-13	 12:02	 ply/lex.py

	 128492	 11-25-13	 12:02	 ply/yacc.py

	 518	 11-25-13	 12:08	 ply-3.4.dist-info/DESCRIPTION.rst

	 439	 11-25-13	 12:08	 ply-3.4.dist-info/pydist.json

	 4	 11-25-13	 12:08	 ply-3.4.dist-info/top_level.txt

	 93	 11-25-13	 12:08	 ply-3.4.dist-info/WHEEL

	 808	 11-25-13	 12:08	 ply-3.4.dist-info/METADATA

	 804	 11-25-13	 12:08	 ply-3.4.dist-info/RECORD

	 -------- 	 -------

	 208189 	 11 files

When a wheel is installed, the files are moved into place in the
normal site-packages directory. None of the usual “build” or
“compile” steps take place. Needless to say, this is the reason why
installing a wheel is super fast.

www.usenix.org	   F eb rua ry 20 14  Vo l . 3 9, N o. 1  45

COLUMNS
The Wheels Keep on Spinning

The other important detail is that the file name for wheels
encodes platform-specific details as appropriate. For example,
many packages include some component of C code. For these
packages, the name will encode information about the underly-
ing architecture. For example, the wheel created for pandas has
the following name on my system:

pandas-0.12.0-cp27-none-macosx_10_4_x86_64.whl

This becomes useful if you’re supporting different kinds of
machines (Linux and Mac OS X) or different architectures
(32-bit vs. 64-bit). Essentially, you can build a wheel cache with
the different versions, and the appropriate version will be used
during installation.

Big Picture: Using Wheels in Practice
Currently there is an effort to have the authors of commonly
used Python packages upload their code to the Python Package
Index as wheels in addition to their normal source distributions.
As more users start relying on the wheel format, this will make
installation faster; however, I also think that this is the least
interesting aspect of wheels. This is because you can still reap
their benefits regardless of whether or not a wheel is actually
uploaded by a package author.

Imagine that you are the maintainer of Python at your company.
Internally, you might have an officially approved version of the
interpreter as well as a standard set of third-party libraries that
you use in all of your applications. As the Python maintainer,
you’ve probably already written some scripts or instructions for
setting up the officially approved Python environment on a new
machine. All of this works, but it’s also a bit slow.

With wheels, you basically can create your own custom pack-
age repository of pre-built extensions. If you point users and
installation scripts at that repository, you can turn that labori-
ous installation process into an operation that only takes a few
seconds, which is pretty neat. Also there are interesting implica-
tions for scripts that push code out to clusters and other large
system installations.

Alternatively, imagine that you’re the maintainer of an applica-
tion in your organization and you need to give it out to users.
These users may have Python on their machines, but perhaps not
all of the compilation tools needed to build complex extensions
such as those involve C code. Not to worry—you could create a
little install script that points them at your custom wheel reposi-
tory. When they install your application, they’ll get all of the
pre-built bits that you’ve made for them. Again, that can solve a
lot of problems.

More Information
Official information about wheels can be found in PEP 427
(http://www.python.org/dev/peps/pep-0427). Tutorials and
documentation can be found at http://wheel.readthedocs.org/en/
latest/. There, you will find even more advanced material, such
as how to attach digital signatures to wheels. Although wheels
are new, they have been blessed officially as the Python stan-
dard. You’re sure to be seeing more of them in the future.

Do you know about the
USENIX Open Access Policy?

www.usenix.org/annual-fund

USENIX is the first computing association to offer free and open access to all of our conferences proceedings
and videos. We stand by our mission to foster excellence and innovation while supporting research with a
 practical bias. Your financial support plays a major role in making this endeavor successful.

Please help to us to sustain and grow our open access program. Donate to the USENIX Annual Fund, renew
your membership, and ask your colleagues to join or renew today

