
48    AU G U S T 20 13  VO L . 3 8 N O.  4 	 www.usenix.org

COLUMNSPractical Perl Tools
Git Smart

D A V I D  N .  B L A N K - E D E L M A N

In the very first paragraph, this column will attempt to be both contrite 
and useful (even to people who don’t like Perl). This issue, we’ll explore 
how Perl can improve your Git (git-scm.com) experience. But first, I 

must confess: I stole the title of this column from a most excellent Ruby gem 
(the heresy of mentioning it here!) found at github.com/geelen/git-smart. 
This gem adds a new subcommand “smart-pull” that knows how to do things 
like automatically stash work in progress so a “git pull” can succeed. Do 
check it out. But enough Ruby dalliance, let’s see what Perl can do for us.

Oh, okay, just a little more dalliance as a small introduction. In this column I’m not going to 
spend virtually any time talking about what Git is, why you would to use it (see git-scm.com), or 
even how to use it (see the many, many “Git’s not so bad once you learn how it works  .  .  .  here’s 
a bunch of lollipop diagrams” articles on the Net for that). I will say that I have been thor-
oughly enjoying (ever) learning and using Git over the past year and a half or so. There’s 
definitely a similarity between Perl and Git. They both share a certain internally consistent 
obtuseness that yields a great deal of power and productivity upon greater study. Given this, I 
think it is interesting to take a look at what happens when the two worlds collide.

Me Git Pretty Someday
The first category of Perl-Git convergence comes in the form of adding more spiffy to some 
existing Git commands. For example, App::Git::Spark lets you type “git spark {arguments}”  
to see a visual representation of the commit activity of a particular contributor. It uses 
sparklines (a term coined by Edward Tufte: www.edwardtufte.com/bboard/q-and-a-fetch 
-msg?msg_id=0001OR&topic_id=1—they are cool, tiny, inline charts) to show how many 
commits took place over a certain time period. Here’s a quick example that shows the number 
of commits to the repository broken out by week for the last eight weeks:

   $ git vspark -w 8 dnb 

   Commits by dnb over the last 8 weeks

   total: 183   avg: 23   max:       45

	 4	 ▉
	 36	 ███████▎
	 30	 ██████▏
	 7	 █▌
	 18	 ███▋
	 19	 ███▉
	 24	 ████▉
	 45	 █████████▏

Another subcommand is added in a similar fashion by the App::gitfancy module. When 
installed (and put in your path) you can type “git fancy {arguments}” and it will print out “a 
more readable graph” than the standard “git log” command provides (so brag the docs). This 
graph is similar to the Git log output I’ve heard called “the train tracks” that attempts to 

David N. Blank-Edelman is the 
Director of Technology at the 
Northeastern University College 
of Computer and Information 

Science and the author of the O’Reilly book 
Automating System Administration with Perl (the 
second edition of the Otter book), available 
at purveyors of fine dead trees everywhere. 
He has spent the past 24+ years as a system/
network administrator in large multi-platform 
environments, including Brandeis University, 
Cambridge Technology Group, and the MIT 
Media Laboratory. He was the program chair 
of the LISA ‘05 conference and one of the LISA 
‘06 Invited Talks co-chairs. David is honored 
to have been the recipient of the 2009 SAGE 
Outstanding Achievement Award and to serve 
on the USENIX Board of Directors beginning in 
June of 2010. dnb@ccs.neu.edu



www.usenix.org	   AU G U S T 20 13  VO L .  3 8 N O. 4  49

COLUMNS
Practical Perl Tools

show the way the different branches have diverged and merged 
into the master branch of a project. So instead of the output of

 $  git log --graph --oneline

     

   looking like this:

   

   *   0a490db Merge branch ‘devel’ into production

   |\  

   | * 729cfd5 removing cups from s_desktop

   | * 3118ab4 everything but restricted gets cups

   | * fcfaf8b No need for gdm in the server class

   * | 4310280 adding dependency repo to puppet list

   |/  

   * 8dd68f3 adding subversion to all managed machines

   * 78349f7 fixing order of facts

showing how some work branched off of the master at 8dd68f3 
later to be merged back in at 0a490db, we can use “git fancy” and 
see:

    | M 	 *0a490db (h) prod (HEAD, origin/prod, prod) Merge  

	 branch ‘devel’ into prod

    .-+ 

    O |  	729cfd5 (r) origin/devel removing cups from s_desktop

    O |  	3118ab4 (r) origin/devel everything but restricted gets  

	 cups

    O |  	fcfaf8b (r) origin/devel No need for gdm in the server  

	 class

    | O  	4310280 (h) prod adding dependency repo to puppet list

    O-^  	8dd68f3 (r) origin/devel adding subversion to all  

	 managed machines

    O    	78349f7 (r) origin/devel fixing order of facts

Besides the cute ASCII graphics and the color (which you can’t 
see), it is doing a number of things to the output, such as using 
one column per each branch, displaying clearly where the Merge 
took place (the M character on the line), distinguishing the 
branches from each other, and so on.

One last subcommand in the same vein if perhaps only to prove it 
is possible to have too much of a good thing: the module Git::Glog 
claims to provide a “spicey [sic] git-log with a hint of gravatars, 
nutmeg and cinnamon.”

If for some reason you’ve always dreamed of seeing a person’s 
gravatar (“Your Gravatar is an image that follows you from site 
to site appearing beside your name when you do things like com-
ment or post on a blog” according to www.gravatar.com) next to 
a person’s name in the “git log” output, you may have to contain 
your excitement when I tell you your dream has come true. Hope-
fully, this excitement isn’t too diminished when I mention that 
the picture you see when typing “git glog” is actually an ASCII 
down-rez’d version of your gravatar (think blocky, really blocky, 

and largely unrecognizable). I come right up to the edge of under-
standing why you might want to use this module but don’t quite 
get there. I’m including it in this column less as a cautionary tale 
and more as a source of inspiration for the sorts of “out there” 
things you could implement.

Dancing Git
The next category of Perl-Git interactions isn’t nearly as snazzy 
because it is fairly obvious and straightforward. At some point 
you may want to perform operations on a Git repository from 
Perl. There are two directions you can go when looking for a 
module for this purpose. The first, more experimental route is 
to find a module that makes use of the (again more experimen-
tal) libgit2 C library. As a small aside, I first heard of libgit2 
in Vicent Marti’s great talk called “My Mom Told Me That Git 
Doesn’t Scale” (which you can watch at vimeo.com/53261709 as 
of the time of this writing). The reason why I’m repeating “more 
experimental” so many times is that these modules seem a bit 
less polished to me (and indeed libgit2 may also fall into that 
category though it has really come a long way). Modules in this 
category include Git::Raw and Git::XS.

The other kind of module calls the standard “git” binary directly. 
It is likely to be less efficient but more solid in the short term. 
We’re going to look at one of the modules that works this way: 
Git::Repository. Working with Git::Repository is, as I mentioned 
before, fairly obvious and straightforward if you know which Git 
command lines you would normally execute by hand.

The first step is to create a Git::Repository object pointing either 
at the working directory:

    use Git::Repository;

    $repo = Git::Repository->new( work_tree => $directory );

or the bare repository (the something.git directory):

          $repo = Git::Repository->new( git_dir => $bare_repo_dir );

or both if need be:

    $repo = Git::Repository->new( work_tree => $directory, 

	                          	   git_dir   => $bare_repo_dir  );

And from there we call run() with the Git command we’d like to 
perform. If by hand, you would type:

    $ git add wp-content/plugins

    $ git commit -m ‘updating WP plugins’

The Perl version would be:

    use Git::Repository;

    $repo = Git::Repository->new( git_dir => $bare_repo_dir );

    $repo->run( add    => ‘wp-content/plugins’ );

    $repo->run( commit => ‘updating WP plugins’ );



50    AU G U S T 20 13  VO L . 3 8 N O.  4 	 www.usenix.org

COLUMNS
Practical Perl Tools

Pretty simple, no? My especially eagle-eyed readers might 
notice that when you call Git on the command line, it some-
times provides (what it thinks is helpful) output in response to 
your commands. Anything sent to STDERR by the commands 
is just printed to STDERR by the code above. If you’d prefer 
to capture the STDERR output so your code can change its 
behavior accordingly, instead of calling run(), you would call 
the command() method. It essentially provides a handle that 
you read from:

my $output = $repo->command( commit => ‘updating WP plugins’ );

print $output->stderr->getlines(); # prints the STDERR output

print $output->stdout->getlines(); # prints the STDOUT output

$output->close; 

Git::Repository has some other nice methods for working with 
the Git command line. See the Git::Repository::Tutorial and 
other documentation in the package. There are a number of other 
possible Perl modules that perform a similar function, includ-
ing Git::Wrapper and VCI (a version control system-agnostic 
framework).

Git Me More
Given the number of modules that fall into this category, I would 
say that there is a burning need out in the larger community for 
a solution that helps you manage multiple Git repositories at the 
same time. Let’s say you have a “build” directory that includes 
a bunch of working directories in it, each a clone of a different 
remote repository containing the components that knit together. 
You can easily imagine wanting to be able to perform a pull on 
all of the repositories so you have the latest version of all of the 
components included before beginning a build. Modules that 
help with this problem include Group::Git, App::Rgit, Git::Bunch, 
App::GitGot, GitMeta, mr (found at http://joeyh.name/code/
mr/), and rgit. I’ll demonstrate two of these but I recommend 
checking them all out to see which one most closely matches 
your particular needs and work style. They are pretty similar, 
though some have features that might scratch your specific itch 
(for example, mr knows how to handle “any combination [of] 
subversion, git, cvs, mercurial, bzr, darcs, cvs, vcsh, fossil and 
veracity repositories”).

Most of these modules are not designed to be used directly by 
a programmer; they largely serve as the library behind a new 
command line script run to perform your actions. For example, 
App::GitGot provides a “got” command, App::Rgit provides “rgit”, 
Group::Git provides “group-git” and so on. Given that, let me 
show you some command line examples from the first two I just 
mentioned.

For “got”, we can type

$ cd working-directory-of-a-repo

$ got add # will prompt you for info about that repo

and “got” will add it to a list of repositories it is tracking for you 
(the list can be seen with “got list”). To run a command on all of 
those repositories, it is just something along the lines of

$ got status

to see something like this:

1) ldap-config  	: OK 

2) migration     	: OK 

3) puppet    	 : OK 

To work on a single repository, you can ask for it by name, as in:

$ got status puppet

Even spiffier, you can also

$ got cd puppet

and it will spawn a shell right in that repo’s working directory.

For a slightly less “sticky” experience (i.e., one that doesn’t 
require you to explicitly track certain repositories), rget is lovely. 
It lets you perform operations on all of the Git repositories found 
in or below a certain directory (i.e., “recursive git”):

# show the status for all of the repositories in/below current dir

$ rgit status  

One nice feature is it defines special tokens that are set based on 
the repository being worked on. For example: %n is the current 
repository name and %b becomes what it calls a “bareified rela-
tive path.” The documentation shows these examples of token 
use:

# Tag all the repositories with their name

$ rgit tag %n

# Add a remote to all repositories in “/foo/bar” to their

# bare counterpart in qux on host

GIT_DIR=”/foo/bar” rgit remote add host git://host/qux/%b

Captain Hook
If we want to move away from talking about command lines 
and into the backend of administering Git repositories, we 
should talk a bit about hooks. If you’ve used hooks with another 
version control system like Subversion, you’ve probably 
encountered the idea that the version control software could 
call scripts when certain actions like commits take place. I 
mentioned SVN intentionally because it ships with a Perl script 
called “commit-email.pl” (sometimes packaged in a separate 
subversion-tools package). This script is meant to be called 
after each commit has taken place so that the owner of the repo 
can receive email notification of actions on that repository.



www.usenix.org	   AU G U S T 20 13  VO L .  3 8 N O. 4  51

COLUMNS
Practical Perl Tools

Git has a similar hook system, and indeed there are Perl modules 
meant to help make use of it. For example, the Git::Hooks pack-
age offers a system for having a single script handle all of your 
hooks. In this script you define sections (from the doc):

   PRE_COMMIT {

       my ($git) = @_;

       # ...

   };

   COMMIT_MSG {

       my ($git, $msg_file) = @_;

       # ...

   };

The documentation shows how you can implement hooks that 
restrict commits to being over a certain size or matching certain 
Perl::Critic standards. It also provides a few plugins for further 
extending the system.

If you need something a little simpler, Git::Hook::PostReceive 
parses an incoming commit and makes it easy to work with its 
contents. Here’s the example from the documentation:

   # hooks/post-receive

   use Git::Hook::PostReceive;

   my $payload = Git::Hook::PostReceive->new->read_stdin( <STDIN> );

   

   $payload->{new_head}; 

   $payload->{delete}; 

   

   $payload->{before};

   $payload->{after};

   $payload->{ref_type}; # tags or heads

   for my $commit (@{ $payload->{commits} } ) {

       $commit->{id};

       $commit->{author}->{name};

       $commit->{author}->{email};

       $commit->{message};

       $commit->{date};

   }

Do Something Interesting 
As a way of ending this column, I wanted to show one last 
interesting intersection of the two worlds. We haven’t seen all 
of the possible connections (e.g., there are a number of useful 
modules for interacting with the very popular GitHub service 
like Net::Github, Pithub, and Github::Fork::Parent), but this one 
deserves special mention.

The GitStore module lets you use a Git repository as a “versioned 
data store.” To give credit where credit is due, this module was 
inspired by an article from 2008 called “Using Git as a Versioned 
Data Store in Python” (newartisans.com/2008/05/using-git-
as-a-versioned-data-store-in-python/) and its subsequent 
reimplementation in Ruby. The main premise is you can point 
this module at a repo and then put “stuff” into that repo, cre-
ating versions as you desire. Here’s the sample code from the 
documentation:

    use GitStore;

    my $gs = GitStore->new(‘/path/to/repo’);

    $gs->set( ‘users/obj.txt’, $obj );

    $gs->set( [‘config’, ‘wiki.txt’], { hash_ref => 1 } );

    $gs->commit();

    $gs->set( ‘yyy/xxx.log’, ‘Log me’ );

    $gs->discard();

    # later or in another pl

    my $val = $gs->get( ‘user/obj.txt’ ); # $val is the same as $obj

    # $val is { hashref => 1 } );

my $val = $gs->get( ‘config/wiki.txt’ );

# $val is undef since discard

my $val = $gs->get( [‘yyy’, ‘xxx.log’ ] );

I said “stuff” above because you can place all sorts of things into 
the datastore: objects, data structures, contents of variables, etc. 
In the first section, you can see that we are storing Perl objects 
under some name in the datastore. In the first set() line, the 
object is stored under the name “users/obj.txt” and is retrieved 
using this key in the get() example. The really cool part of this 
example can be found in the commit() call. With that call, we’re 
doing a “git commit,” and hence are committing that version of 
the datastore. This may not be the fastest datastore available, 
but for certain applications it is pretty darn cool.

Take care and I’ll see you next time.


