
42    J U N E 20 14  VO L . 3 9, N O. 3 	 www.usenix.org

COLUMNS

iVoyeur
Monitoring Design Patterns

D A V E J O S E P H S E N

Plutarch tells a great story about Hannibal, in the time of the reign of
Dictator Fabius. Hannibal, a barbarian from the south, was roaming
about the countryside making trouble as barbarians do, when through

either some subtlety on the part of Fabius or just seriously abominable
direction-giving on the part of a few sheep farmers (reports differ), Hannibal
managed to get himself trapped and surrounded in a valley.

Knowing that he wasn’t going to be able to escape by assault in any direction, Hannibal came
up with an ingenious ploy. The story goes that he waited until nightfall, and in the darkness
he sent his men up the hillsides, while keeping his livestock in the valley floor. Then, setting
the horns of his cattle ablaze, he stampeded them towards Fabius’ lines. The Romans, seeing
what they thought was a charge of torch-wielding barbarians (but which was really a mul-
titude of terrified flaming cattle), reformed and dug in, and in so doing, allowed Hannibal’s
men to escape past them on the slopes above.

Unless you’re a cow, you have to agree that this was a pretty great bit of ingenuity. It’s also a
pretty great example of the UNIX principle of unexpected composition: that we should craft
and use tools that may be combined or used in ways that we never intended. Before Hanni-
bal, few generals probably considered the utility of flaming cattle in the context of anti-siege
technology.

The monitoring systems built in the past fail pretty miserably when it comes to the principle
of unexpected composition. Every one of them is born from a core set of assumptions—
assumptions that ultimately impose functional limits on what you can accomplish with the
tool. This is perhaps the most important thing to understand about monitoring systems
before you get started designing a monitoring infrastructure of your own: Monitoring sys-
tems become more functional as they become less featureful.

Some systems make assumptions about how you want to collect data. Some of the very first
monitoring systems, for example, assumed that everyone would always monitor everything
using SNMP. Other systems make assumptions about what you want to do with the data once
it’s collected—that you would never want to share it with other systems, or that you want to
store it in thousands of teensy databases on the local file system. Most monitoring systems
present this dilemma: They each solve part of the monitoring problem very well but wind up
doing so in a way that saddles you with unwanted assumptions, like SNMP and thousands of
teensy databases.

Many administrators interact with their monitoring infrastructures like they might a bag of
jellybeans—keeping the pieces they like and discarding the rest. In the past few years, many
little tools have come along that make this functionally possible, enabling you to replace or
augment your single, centralized monitoring system with a bunch of tiny, purpose-driven

Dave Josephsen is
the sometime book-
authoring developer
evangelist at Librato.
com. His continuing

mission: to help engineers worldwide close the
feedback loop. dave-usenix@skeptech.org

www.usenix.org	   J U N E 20 14  VO L . 3 9, N O. 3  43

COLUMNS
iVoyeur

data collectors wired up to a source-agnostic storage tier (dis-
claimer: I work for a source-agnostic storage tier as a service
company called Librato).

This strategy lets you use whatever combination of collectors
makes sense for you. You can weave monitoring into your
source code directly, or send forth herds of flaming cattle to
collect it, and then store the monitoring data together, where
it can be visualized, analyzed, correlated, alerted on, and even
multiplexed to multiple destinations regardless of its source
and method of collection.

Tons of open source data collectors and storage tiers are avail-
able, but instead of talking about any of them specifically, I’d like
to write a little bit about the monitoring “patterns” that currently
exist in the wild, because although there are now eleventybillion
different implementation possibilities, they all combine the same
basic five or six design patterns. In the same way I can describe
Hannibal’s livestock as a “diversion movement to break contact,”
I hope that categorizing these design patterns will make it easier
to write about the specifics of data collectors and flaming cows
later on.

Collection Patterns for External Metrics
I begin by dividing the target metrics themselves into two gen-
eral categories: those that are derived from within the monitored
process at runtime, and those that are gathered from outside the
monitored process. Considering the latter type first, four pat-
terns generally are used to collect availability and performance
data from outside the monitored process.

The Centralized Polling Pattern
Anyone who has worked with monitoring systems for a while
has used centralized pollers. They are the archetype design—the
one that comes to mind first when someone utters the phrase
“monitoring system” (although that is beginning to change). See
Figure 1.

Like a grade-school teacher performing the morning roll call, the
centralized poller is a monolithic program that is configured to
periodically poll a number of remote systems, usually to ensure
that they are available but also to collect performance metrics.
The poller is usually implemented as a single process on a single
server, and it usually attempts to make guarantees about the
interval at which it polls each service.

Because this design predates the notion of configuration man-
agement engines, centralized pollers are designed to minimize
the amount of configuration required on the monitored hosts.
They may rely on external connectivity tests, or they may
remotely execute agent software on the hosts they poll; in either
case, however, their normal mode of operation is to periodically
pull data directly from a population of monitored hosts.

Centralized pollers are easy to implement but often difficult
to scale. They typically operate on the order of minutes, using,
for example, five-minute polling intervals, and this limits the
resolution at which they can collect performance metrics. Older
centralized pollers are likely to use agents with root-privileged
shell access for scripting, communicate using insecure proto-
cols, and have unwieldy (if any) failover options.

Although classic centralized pollers like Nagios, Munin, and
Cacti are numerous, they generally don’t do a great job of playing
with others because they tend to make the core assumption that
they are the ultimate solution to the monitoring problem at your
organization. Most shops that use them in combination with
other tools interject a metrics aggregator like statsd or other
middleware between the polling system and other monitoring
and storage systems.

The Stand-Alone Agent Pattern
Stand-alone agents have grown in popularity as configuration-
management engines have become more commonplace. They are
often coupled with centralized pollers or roll-up model systems
to meet the needs of the environment. See Figure 2.

Agent software is installed and configured on every host that
you want to monitor. Agents usually daemonize and run in the
background, waking up at timed intervals to collect various
performance and availability metrics. Because agents remain
resident in memory and eschew the overhead of external connec-
tion setup and teardown for scheduling, they can collect metrics
on the order of seconds or even microseconds. Some agents push
status updates directly to external monitoring systems, and
some maintain summary statistics that they present to pollers
as needed via a network socket.

Agent configuration is difficult to manage without a CME,
because every configuration change must be pushed to all appli-
cable monitored hosts. Although they are generally designed

Figure 1: The centralized poller monitoring pattern

44    J U N E 20 14  VO L . 3 9, N O. 3 	 www.usenix.org

COLUMNS
iVoyeur

to be lightweight, they can introduce a non-trivial system load
if incorrectly configured. Be careful with closed-source agent
software, which can introduce backdoors and stability prob-
lems. Open source agents are generally preferred because their
footprint, overhead, and security can be verified and tweaked if
necessary.

Collectd is probably the most popular stand-alone agent out
there. Sensu uses a combination of the agent and polling pattern,
interjecting a message queue between them.

The Roll-Up Pattern
The roll-up pattern is often used to achieve scale in monitoring
distributed systems and large machine clusters or to aggregate
common metrics across many different sources. It can be used in
combination with agent software or instrumentation. See Figure 3.

The roll-up pattern is a strategy to scale the monitoring infra-
structure linearly with respect to the number of monitored
systems. This is usually accomplished by co-opting the moni-
tored machines themselves to spread the monitoring workload
throughout the network. Usually, small groups of machines use
an election protocol to choose a proximate, regional collection
host, and send all of their monitoring data to it, although some-
times the configuration is hard-coded.

The elected host summarizes and deduplicates the data, then
sends it up to another host elected from a larger region of sum-
marizers. This host in turn summarizes and deduplicates it, and
so forth.

Roll-up systems scale well but can be difficult to understand and
implement. Important stability and network-traffic consider-
ations accompany the design of roll-up systems.

Ganglia is a popular monitoring project that combines stand-
alone agents with the roll-up pattern to monitor massive clusters

of hosts with fine-grained resolution. The statsd daemon process
can be used to implement roll-up systems to hand-off in-process
metrics.

Logs as Event-Streams
System and event logs provide a handy event stream from which
to derive metric data. Many large shops have intricate central-
ized log processing infrastructure from which they feed many
different types of monitoring, analytics, event correlation, and
security software. If you’re a Platform-as-a-Service (PaaS)
customer, the log stream may be your only means to emit, collect,
and inspect metric data from your application.

Applications and operating systems generate logs of impor-
tant events by default. The first step in the log-stream pattern
requires the installation or configuration of software on each
monitored host that forwards all the logs off that host. Event-
Reporter for Windows or rsyslogd on UNIX are popular log for-
warders. Many programming languages also have log generation
and forwarding libraries, such as the popular Log4J Java library.
PaaS systems like Heroku have likely preconfigured the logging
infrastructure for you.

Logs are generally forwarded to a central system for processing,
indexing, and storage, but in larger environments they might be
MapReduced or processed by other fan-out style parallel pro-
cessing engines. System logs are easily multiplexed to different
destinations, so there is a diverse collection of software available
for processing logs for different purposes.

Although many modern syslog daemons support TCP, the syslog
protocol was originally designed to use UDP in the transport
layer, which can be unreliable at scale. Log data is usually
emitted by the source in a timely fashion, but the intermediate
processing systems can introduce some delivery latency. Log

Figure 2: The stand-alone agent pattern Figure 3: The roll-up pattern

www.usenix.org	   J U N E 20 14  VO L . 3 9, N O. 3  45

COLUMNS
iVoyeur

data must be parsed, which can be a computationally expensive
endeavor. Additional infrastructure may be required to process
logging event streams as volume grows.

As I’ve already mentioned, with PaaS providers like Heroku
and AppHarbor, logs are the only means by which to export and
monitor performance data. Thus, many tools like Heroku’s own
log-shuttle and l2MET have grown out of that use-case. There
are several popular tools for DIY enterprise log snarfing, like
logstash, fluentd, and Graylog, as well as a few commercial offer-
ings, like Splunk.

Collection Patterns for In-Process Metrics
Instrumentation libraries, which are a radical departure from
the patterns discussed thus far, enable developers to embed
monitoring into their applications, making them emit a constant
stream of performance and availability data at runtime. This
is not debugging code but a legitimate part of the program that
is expected to remain resident in the application in production.
Because the instrumentation resides within the process it’s
monitoring, it can gather statistics on things like thread count,
memory buffer and cache sizes, and latency, which are difficult
(in the absence of standard language support like JMX) for
external processes to inspect.

Instrumentation libraries make it easy to record interesting
measurements inside an application by including a wealth of
instrumentation primitives like counters, gauges, and tim-
ers. Many also include complex primitives like histograms and
percentiles, which facilitate a superb degree of performance
visibility at runtime.

The applications in question are usually transaction-oriented;
they process and queue requests from end users or external
peer processes to form larger distributed systems. It is critically

important for such applications to communicate their perfor-
mance metrics without interrupting or otherwise introducing
latency into their request cycle. Two patterns are normally
employed to meet this need.

The Process Emitter Pattern
Process emitters attempt to immediately purge every metric via
a non-blocking channel. See Figure 4.

The developer imports a language-specific metrics library and
calls an instrumentation function like time() or increment(), as
appropriate for each metric he wants to emit. The instrumen-
tation library is effectively a process-level, stand-alone agent
that takes the metric and flushes it to a non-blocking channel
(usually a UDP socket or a log stream). From there, the metric is
picked up by a system that employs one or more of the external-
process patterns.

Statsd is a popular and widely used target for process emitters.
The project maintains myriad language bindings to enable the
developer to emit metrics from the application to a statsd dae-
mon process listening on a UDP socket.

The Process Reporter Pattern
Process reporters use a non-blocking dedicated thread to store
their metrics in an in-memory buffer. They either provide a
concurrent interface for external processes to poll this buffer or
periodically flush the buffer to upstream channels. See Figure 5.

The developer imports a language-specific metrics library and
calls an instrumentation function like time() or increment(), as
appropriate for each metric he wants to emit. Rather than purg-
ing the metric immediately, process reporters hand the metric
off to a dedicated, non-blocking thread that stores and some-
times processes summary statistics for each metric within the

Figure 4: The process emitter pattern Figure 5: The process reporter pattern

46    J U N E 20 14  VO L . 3 9, N O. 3 	 www.usenix.org

COLUMNS
iVoyeur

memory space of the monitored process. Process reporters can
push their metrics on a timed interval to an external monitor-
ing system or can export them on a known interface that can be
polled on demand.

Process reporters are specific to the language in which they are
implemented. Most popular languages have excellent metrics
libraries that implement this pattern. Coda Hale Metrics for
Java, Metriks for Ruby, and go-metrics are all excellent choices.

Thanks for bearing with me once again. I hope this article will
help you identify the assumptions and patterns employed by
the data collectors you choose to implement in your environ-
ment, or at least get you thinking about the sorts of things you
can set aflame should you find yourself cornered by Roman
soldiers. Be sure to check back with me in the next issue when
I bend yet another tenuously related historical or mythical
subject matter to my needs in my ongoing effort to document the
monitoringosphere.

Become a USENIX Supporter and
Reach Your Target Audience

The USENIX Association welcomes industrial sponsorship and offers custom packages to help you
 promote your organization, programs, and products to our membership and con ference attendees.

Whether you are interested in sales, recruiting top talent, or branding to a highly targeted audience, we
offer key outreach for our sponsors. To learn more about becoming a USENIX Supporter, as well as our
multiple conference sponsorship packages, please contact sponsorship@usenix.org.

Your support of the USENIX Association furthers our goal of fostering technical excellence and innovation
in neutral forums. Sponsorship of USENIX keeps our conferences affordable for all and supports scholar-
ships for students, equal representation of women and minorities in the computing research community,
and the development of open source technology.

Learn more at:
www.usenix.org/supporter

