
THE MAGAZINE OF USENIX & SAGE
April 2004 • volume 29 • number 2

The Advanced Computing Systems Association

inside:
APPLICATIONS
Mahmoud: Wireless Java Application Development

6 Vol. 29, No. 2 ;login:

by Qusay H.
Mahmoud
Dr. Qusay H.
Mahmoud is an
assistant professor at
the Department of
Computing and
Information Science,
University of Guelph,
and associate chair of
the Distributed Com-
puting and Commu-
nications Systems
Technology program
(University of
Guelph-Humber).
qmahmoud@cis.uoguelph.ca

wireless Java™

application
development
Developing wireless applications using the Wireless Application Protocol
(WAP) is similar to developing Web pages with a markup language,
because WAP is browser-based. While Java Servlets and Java Server Pages
(JSPs) can be used to generate WAP’s WML pages dynamically, all commu-
nications between the device and the application go over the wireless link,
and this is expensive. In addition, WAP isn’t really suitable for developing
wireless interactive applications such as mobile games. The Sun Java 2
Micro Edition (J2ME) platform can be used to develop wireless interactive
applications or MIDlets that can be downloaded over the air and installed
on the device.

This article presents an overview of the genesis of the J2ME platform and walks you
through a sample wireless application to give you a flavor of what’s involved in devel-
oping wireless Java applications. It is worth noting that the J2ME is already deployed
on millions of devices, such as cell phones, that are available from Motorola/Nextel,
Nokia, and other vendors.

Introduction to J2ME
The Java 2 Micro Edition (J2ME) is aimed at the consumer and embedded-devices
market. It specifically addresses the rapidly growing consumer space that contains
commodities such as cellular telephones, pagers, Palm Pilots, set-top boxes, and other
consumer devices. It is targeted at two product groups: personal, mobile, connected
information devices (e.g., cellular phones, pagers, and organizers) and shared, fixed,
connected information devices (e.g., set-top boxes, Internet TVs, and car entertainment
and navigation systems). The groups are addressed using different configurations and
profiles.

Configurations
Cellular telephones, pagers, organizers, etc., are diverse in form, functionality, and fea-
ture. For these reasons, the J2ME supports minimal configurations of the Java Virtual
Machine (JVM) and APIs that capture the essential capabilities of each kind of device.
At the implementation level, a J2ME configuration defines a JVM and a set of hori-
zontal APIs for a family of products that have similar requirements on memory
budget and processing power. In other words, a configuration specifies support for:
(1) Java programming language features, (2) JVM features, and (3) Java libraries and
APIs.

Currently, there are two standard configurations: the Connected Limited Device Con-
figuration (CLDC) and the Connected Device Configuration (CDC). The CLDC is
aimed at cellular phones, pagers, and organizers, while the CDC targets set-top boxes,
Internet TVs, and car entertainment and navigation systems. In this article we are
more concerned with the CLDC.

As you can see from Figure 1, a JVM (e.g., the K Virtual Machine or KVM) is at the
heart of the CLDC. Note that CLDC 1.0 was the initial version, but today CLDC 1.1,
the enhanced version, is the standard. A major difference between the two is that

CLDC 1.0 didn’t include support for floating point numbers (so you could not declare
variables of type float or double), but CLDC 1.1 does.

The K Virtual Machine
The K Virtual Machine (KVM) is a compact, complete, and portable Java vir-
tual machine specifically designed from the ground up for small, resource-
constrained devices. The design goal of the KVM was to create the smallest
possible complete JVM that would maintain all the central aspects of the Java
programming language but would run in a resource-constrained device with a
few hundred kilobytes of total memory. The J2ME specification describes that
the KVM was designed to be: (1) small, with a static memory footprint (40–80
KB), (2) clean and highly portable, (3) modular and customizable, and (4) as
“complete” and “fast” as possible.

Profiles
The J2ME makes it possible to define Java platforms for vertical markets by
introducing profiles. At the implementation level, a profile is a set of vertical
APIs that reside on top of a configuration, as shown in Figure 1, to provide
domain-specific capabilities such as GUI APIs.

Currently, there is one profile implemented on top of the CLDC, the Mobile Informa-
tion Device Profile (MIDP), but other profiles are in the works. The MIDP 1.0 was the
initial profile and has several constraints (e.g., no support for low-level sockets). MIDP
2.0 is the enhanced version of MIDP with several new features, including end-to-end
security (support for HTTPS), as well as support for sockets.

JVM Supporting CLDC vs. J2SE JVM
There are several differences between a JVM supporting CLDC and the Java 2 Stan-
dard Edition (J2SE) JVM. A number of features have been eliminated from a JVM
supporting CLDC, either because they are too expensive to implement or because their
presence would have imposed security problems. Therefore, in a JVM-supporting
CLDC such as the KVM, there is:

n No floating point support: CLDC 1.0 does not support floating point numbers and
therefore no CLDC-based application can use any floating point numbers and
types such as float or double. This is mainly because CLDC target devices do not
have hardware floating point support. Note that CLDC 1.1 does include support
for floating point numbers.

n No finalization: Finalization is not supported, meaning that the CLDC APIs do
not include the method Object.finalize(), and therefore there is no finalization of
class instances.

n Limited error handling: Runtime errors are handled in an implementation-specific
manner. The CLDC defines only three error classes: java.lang.Error, java.lang.Out-
OfMemoryError, and java.lang.VirtualMachineError. Other types of errors are han-
dled in a device-dependent manner that would involve terminating the applica-
tion or resetting the device.

n No Java Native Interface (JNI): A JVM-supporting CLDC does not implement the
JNI, mainly for security reasons and because implementing JNI is considered
expensive given the memory constraints of the CLDC target devices.

n No user-defined class loader: A JVM-supporting CLDC must have a built-in class
loader that cannot be overridden or replaced by the user. This is mainly for secu-
rity reasons.

7April 2004 ;login:

l

A

P
P

LI
C

AT
IO

N
S

WIRELESS JAVA APPLICATION DEVELOPMENT l

Figure 1: High-level architecture of J2ME

Vol. 29, No. 2 ;login:

n No support for reflection: No reflection features are supported, and therefore there
is no support for RMI or object serialization.

n No thread groups or daemon threads: While a JVM-supporting CLDC implements
multi-threading, it should not have support for thread groups or daemon threads.
If you want to perform thread operations for groups of threads, collection objects
should be used to store the thread objects at the application level.

The CLDC APIs
The J2SE APIs require several megabytes of memory and therefore they are not all
suitable for small devices with limited resources. In designing the APIs for the CLDC
the aim was to provide a minimum set of libraries that would be useful for application
development and profile definition for a variety of small devices. The CLDC library
APIs can be divided into two categories:

1. Classes that are a subset of the J2SE APIs: These classes are located in the
java.lang, java.io, and java.util packages. They have been derived from the
J2SE 1.3. However, note that not all classes from these packages have been
inherited.

2. Classes that are specific to the CLDC: These classes are located in the
javax.microedition package and its subpackages.

MIDP Programming
Anyone who has some hands-on programming with Java can start developing MIDP
applications (or MIDlets) right after reading this article. MIDP programming is easier
than J2SE programming because the MIDP API is simpler. You need to learn about a
few classes before you start writing your own MIDlets. Your MIDlet must inherit from
the MIDlet class of the javax.microedition.midlet package, then you simply override
some methods; the MIDlet lifecycle methods are: startApp(), pauseApp(), and destroy-
App(). To handle events, you must implement the CommandListener interface. Here is
a simple MIDlet example:

LISTING 1: LOGINMIDLET.JAVA
import javax.microedition.lcdui.*;
import javax.microedition.midlet.MIDlet;

/**
* This login MIDlet prompts the user for a username and a password. If the
* user enters the correct account information, a list of options is
* displayed, otherwise an error message is displayed.
*
* @author: Qusay H. Mahmoud
*/
public class LoginMIDlet extends MIDlet implements CommandListener {

private Display display;
private TextField userName;
private TextField password;
private Form form;
private Command cancel;
private Command login;

// Constructor
public LoginMIDlet() {

userName = new TextField("LoginID:", " ", 10, TextField.ANY);
password = new TextField("Password”, " ", 10, TextField.PASSWORD);

8

form = new Form("Sign in");
cancel = new Command("Cancel", Command.CANCEL, 2);
login = new Command("Login", Command.OK, 2);

}

// MIDlet lifecycle method: called when the MIDlet is started:
public void startApp() {

display = Display.getDisplay(this);
form.append(userName);
form.append(password);
form.addCommand(cancel);
form.addCommand(login);
form.setCommandListener(this);
display.setCurrent(form);

}

// MIDlet lifecycle method: called when MIDlet is paused:
public void pauseApp() {
}

// MIDlet lifecycle method: called when the MIDlet is destroyed:
public void destroyApp(boolean unconditional) {

notifyDestroyed();
}

// Checks if the user enters the correct account information:
public void validateUser(String name, String password) {

if (name.equals("qm") && password.equals("guessit")) {
menu();

} else {
tryAgain();

}
}

// Display a list of services:
public void menu() {

List services = new List("Choose one", Choice.EXCLUSIVE);
services.append("Check Email", null);
services.append("New Message", null);
services.append("Address Book", null);
services.append("Customize", null);
services.append("Sign Out", null);
services.addCommand(new Command("Back", Command.CANCEL, 2));
services.addCommand(new Command("Select", Command.OK, 2));
display.setCurrent(services);

}

// Display an error message if the user enters the incorrect account info:
public void tryAgain() {

Alert error = new Alert("Login Incorrect", "Please try again", null,
AlertType.ERROR);

error.setTimeout(Alert.FOREVER);
userName.setString(" ");
password.setString(" ");
display.setCurrent(error, form);

}

// Handle events:

9April 2004 ;login:

l

A

P
P

LI
C

AT
IO

N
S

WIRELESS JAVA APPLICATION DEVELOPMENT l

Vol. 29, No. 2 ;login:

public void commandAction(Command c, Displayable d) {
String label = c.getLabel();
if(label.equals("Cancel")) {

destroyApp(true);
} else if(label.equals("Login")) {

validateUser(userName.getString(), password.getString());
}
// add code to handle user’s selection from list of services

}
}

In Listing 1, the midlet and lcdui packages are imported. The midlet package defines
the MIDP, and the lcdui package provides graphical user interface APIs for imple-
menting user interfaces for MIDP applications. It is worth noting that the lcdui pack-
age is not a subset of Swing/AWT, simply because the Swing/AWT assumes certain user
interaction and provides a rich feature set (such as resizing overlapping windows) not
found on mobile devices. The basic unit of interaction on a mobile device is the screen
– users’ interaction with wireless applications by navigating through screens.

Each MIDlet must extend the MIDlet class, similar to applets, which allows for the
orderly starting, stopping, and cleanup of the MIDlet. Therefore, a MIDlet must not
have a public static void main() method.

In LoginMIDlet, the Command class is used to encapsulate the semantic information
of an action. The command itself contains only information about a command, but
not the actual action that happens when a command is activated. The action is defined
in a CommandListener associated with the screen. Let’s look at the following com-
mand statement:

Command infoCommand = new Command("Info", Command.SCREEN, 2);

A command contains three pieces of information: a label, a
type, and a priority. The label (which is a string) is used for
the visual representation of the command. The type of the
command specifies its intent. And the priority value describes
the importance of this command relative to other commands
on the screen. A priority value of 1 indicates the most impor-
tant command, and higher priority values indicate commands
of lesser importance. When the application is executed, the
device chooses the placement of a command based on the type
of the command, and places similar commands based on their
priorities.

Figure 2 shows the screens when the application is first
launched.

Development Tools
There are several commercial and freely available tools for developing wireless Java
applications. My favorite tool is Sun’s J2ME Wireless Toolkit (J2ME WTK), which is
easy to use and freely available. The J2ME WTK provides a comprehensive tool set and
emulators for developing and testing wireless applications, and it is available for the
Windows, Linux, and Solaris platforms. It simplifies the development of wireless appli-
cations by automating several steps such as preverification and creating Java Archive

10

Figure 2: LoginMIDlet launched and activated

(JAR) and Java Application Descriptor (JAD) files
(more on this later). Figure 3 shows the interface for
the J2ME WTK.

The J2ME WTK can be downloaded from http://
java.sun.com/products/j2mewtoolkit. To test the
LoginMIDlet described above, create a new proj-
ect, call it Login, and call the MIDlet LoginMIDlet.
Then copy my LoginMIDlet.java (the above code)
to the apps\Login\src directory of your J2ME WTK
installation. The next step is to compile (click on
the Build button) and run (click on the Run but-
ton) the application. You can choose a device to
emulate the application on.

Behind the Scenes
As I mentioned above, the J2ME WTK automates the processes of preverification and
packaging of the application. This is done when you click on the Build and Run but-
tons. So what are preverification and packaging?

CLASS VERIFICATION

In the J2SE Java virtual machine, the class verifier is responsible for rejecting invalid
class files. A JVM-supporting CLDC must be able to reject invalid class files as well, but
the class verification process is expensive and time-consuming and, therefore, is not
ideal for small, resource-constrained devices. The KVM designers decided to move
most of the verification work off the device and onto the desktop, where the class files
are compiled or onto a server machine from which applications are being downloaded.
This step (off-device class verification) is referred to as preverification. The device is
simply responsible for running a few checks on the preverified class file to ensure that
it was verified and is still valid.

Therefore, after compiling the .java into .class, the .class file must be preverified using
the preverify command (in J2ME WTK). This command preprocesses the program for
use by the KVM without changing the name of a class. The preverify command takes a
class or a directory of classes and preprocesses them. Luckily, this task is automated by
the J2ME WTK.

PACKAGING THE APPLICATION

If an application consists of multiple classes, a JAR file is used to group all the classes
together so that the application is easy to distribute and deploy. In the above example,
a JAR file (Login.jar) is created – the J2ME WTK automates this using the jar com-
mand.

The next step in packaging is creating a manifest file (or application descriptor), which
provides information about the contents of the JAR file. The application descriptor is
used by the application management software on the device to manage the MIDlet. It
is also used by the MIDlet itself to configure specific attributes. The file extension of
the application descriptor is jad, which stands for Java Application Descriptor. There is
a predefined set of attributes to be used in every application descriptor. One of the
attributes is the MIDlet-Jar-Size, which is used by the application management soft-

11April 2004 ;login:

l

A

P
P

LI
C

AT
IO

N
S

WIRELESS JAVA APPLICATION DEVELOPMENT l

Figure 3: The J2ME Wireless Toolkit

http://java.sun.com/products/j2mewtoolkit

Vol. 29, No. 2 ;login:

ware to determine whether the device is
capable of running the MIDlet before it
downloads it (over the air) to the device.
Figure 4 shows the JAD file for the Login
project (click on the Settings button of the
J2EME WTK to see this).

Deploying Applications
If you have a Java-enabled cell phone from
Motorola/Nextel, you can download appli-
cations on it either over the air (you’ll get
billed for the air time) or from the Internet
through your PC using a data cable. For
more information, visit http://idenphones.
motorola.com.

Once you have tested the application and you are satisfied with what you see, you can
deploy it on a Web server simply by uploading its JAR and JAD files to a Web server.
Now your application is downloadable. However, you need to add the following new
MIME type to your configuration file and restart the Web server:

text/vnd.sun.j2me.app-descriptor jad

Integrating WAP and J2ME
MIDlets combine excellent online and offline capabilities that are useful for the wire-
less environment, which suffers from low bandwidth and network disconnection. Inte-
grating WAP and MIDP opens up possibilities for new wireless applications and
over-the-air distribution models. Therefore, WAP and MIDP should be viewed as
complementary rather than competing technologies. In order to facilitate over-the-air
provisioning, there is a need for some kind of an environment on the handset that
allows the user to enter a URL for a MIDlet, for example. This environment could
very well be a WAP browser. Similar to Java Applets that are integrated into HTML,
MIDlets can be integrated into a WML page. The WML page can then be called from a
WAP browser, and the embedded MIDlet gets installed on the device. In order to
enable this, a WAP browser (with support for over-the-air provisioning) is needed on
the device. An alternative approach for over-the-air provisioning is the use of Short
Message Service (SMS), as has been done by Siemens, where the installation of
MIDlets is accomplished by sending a corresponding SMS. If the SMS contains a URL
to a JAD file specifying a MIDlet, then the recipient can install the application simply
by confirming the SMS.

Conclusion
This article introduced the J2ME platform and described the development model for
wireless Java applications. The MIDlet provided shows that programming with J2ME
is easier than programming with J2SE, because the API is simpler and there are only a
dozen classes you need to learn. I hope this article helps you get started with wireless
Java application development. Stay tuned for more articles on wireless Java.

FURTHER READING
Java 2 Micro Edition (J2ME):
http://java.sun.com/j2me

The J2ME Wireless Toolkit:
http://java.sun.com/products/j2mewtoolkit

Learning Wireless Java, by Qusay H. Mahmoud,
available from O’Reilly

Motorola iDEN phones:
http://idenphones.motorola.com

Sun’s Source for Java Developers:
http://java.sun.com

12

Figure 4: JAD file for the Login project

http://idenphones
http://java.sun.com/j2me
http://java.sun.com/products/j2mewtoolkit
http://idenphones.motorola.com
http://java.sun.com

