DAVE JOSEPHSEN

iVoyeur: breaking
up is hard to do

Dave Josephsen is the author of Building a
Monitoring Infrastructure with Nagios (Pren-
tice Hall PTR, 2007) and is senior systems
engineer at DBG, Inc., where he maintains

a gaggle of geographically dispersed server
farms. He won LISA '04’s Best Paper award
for his co-authored work on spam mitiga-
tion, and he donates his spare time to the
SourceMage GNU Linux Project.

dave-usenix@skeptech.org

ON MAY 6, 2009, A MESSAGE WITH THE
subject line “Nagios is dead, long live Icinga”
was posted to the nagios-devel list [1]. It
briefly described a fork of Nagios core called
Icinga and outlined the reasons why the
developers thought a fork necessary. That
alone was pretty earth-shattering news to
the Nagios community at large, but as the
thread developed, it became even more
controversial; secret meetings, corporate
conspiracies, deceit, betrayal, public hang-
ings ... well, all of that stuff except the pub-
lic hangings. Anyway, | thought this month
it would be fun to put on my journalist hat
(otherwise known as my “prejudiced troll”
hat) and relate the story thus far.

86

Nagios is a fantastic project, and a fork could affect
a lot of folks, including a large percentage of the
readership of this magazine. My first reaction to the
idea of a fork was negative; it didn't seem as though
good things could possibly come from it. When

I saw who was behind the fork, several German
developers from the Nagios Advisory Board as well
as Netways.de (the guys who run nagiosexchange.
com and organize arguably the largest annual Nag-
ios conference), it became obvious that there were
some legitimate gripes behind it. Although there
are a fair number of personalities and motivations
involved, I think those gripes are probably the best
place to start. Let’s take a look at Icinga’s stated rea-
sons for forking, the reaction of Ethan Galstad (the
creator of Nagios) to them, and also some analysis
of my own (because what would you do without
my razor-sharp insight?).

Icinga’s reasons, taken from their Web site and the
thread mentioned in [1], are:

= Nagios development has stalled, because there
is only one person with CVS commit access
(namely, Ethan), and he’s been inactive (mean-
ing he’s been ignoring bug fixes and new feature
patches from the community, and further that
he’s not responding to email or list traffic).

= Nagios Enterprises, the commercial face of Ethan,
has lately begun “harassing” developers about
trademark infringement (meaning Ethan’s lawyers
are going around demanding devs and commu-
nity members turn over domain names they’ve
registered that have the name “Nagios” in them).

= NDOUtils (a database connectivity toolkit) is
“still buggy.”

;LOGIN: VOL. 35, NO. 1

;LOGIN: FEBRUARY 2010

= The Web interface is old and/or ugly (arguably a question of esthetics, but
the general feeling for a number of years has been that the UI should be
rewritten in PHP; it is currently a CGI written in C).

Although these seem like four unrelated issues at first glance, they actually
break down into two groups of very closely related issues. The first group
being the first two bullet points—that development has stalled because
Ethan is a bottleneck, and that community members are being hassled by
Nagios Enterprises lawyers. As evidenced by [2] and [3], the fork members
felt that Ethan went AWOL after the 3.0 release. Simple bug fix patches were
ignored (although a few critical bug fixes were, in fact, merged into core),
Ethan was not providing a detailed road map forward, and new features they
desperately wanted were nowhere near being merged into core.

Understanding that Ethan is a busy guy, several members of the Advisory
Board got together during and after the 2008 Netways conference and created
a patch queue system to streamline the process [4]. Ethan seemed to ignore
the system, as well as attempts on the part of the community to open up

the development process. When the trademark infringement notices started
coming in, it was particularly frustrating to many members of the community.
Their concerns went unheard while the gift of their labor and their years of
enthusiastic evangelizing were being met with cease-and-desist letters.

For his part, Ethan responded that he had been forced away from develop-
ment work by some legal trouble [5]. Without providing any real detail,

he did mention Netways.de as the source of the problem. Although Ethan
doesn't tell us this, what apparently happened was Netways.de (a German
corporation) registered the name “Nagios” as a trademark in Germany [6],
and Ethan was forced to sue them to get his name back. His attentions
thusly diverted, Nagios core began to rot. Given this context, we gain some
insight into the lack of attention to project work on his part, as well as the
trademark authoritarianism. Given the legal entanglement, when Ethan was
blindsided by a fork, his off-the-cuff reaction was that it was an attempt by
Netways.de to undermine his credibility with the community.

From Ethan’s perspective, Nagios had had a falling-out with Netways.de, so
Netways.de was attempting to fork Nagios and pirate the community away to
a project they controlled. If they couldn’t steal Nagios in the courtroom, then
they would attempt a PR coup and rename the project Icinga. Netways.de
has explicitly denied this accusation [7], but the fact that the Icinga project
lead is also the CTO of Netways.de lends some strength to this perspective.
Netways.de’s case is also not helped by the fact that the fork was planned
and orchestrated in secret and without any attempt to notify or warn Ethan.

Tinfoil hats off and drama aside, I think I share the opinion of most of the
community and tech press out there when I say that Nagios did not have a
scalable development model, and that’s a bad thing. If a project the size of
Nagios can be halted by diverting one person’s attention, that’s not just a
gaping procedural problem but also a security bug. Netways.de didn’t just
cause Ethan legal headaches, they DoS’d his development model (whether
they meant to or not is another interesting question). Clearly Nagios needs a
few more lead devs with commit access.

If Icinga has done anything, it's opened Ethan’s eyes to this fact, and he
claims to be taking steps to rectify that situation [8]. Other devs in the com-
munity have confirmed that he’s approaching them about lead dev roles and
commit access [6]. He’s also vowing to correct his admitted communication
deficiencies [8], and he’s written numerous blog posts to clarify his position
on the various topics surrounding the fork.

IVOYEUR: BREAKING UP IS HARD TO DO 87

88

I've never personally had any contact with Ethan (having written the Pren-
tice Hall book on Nagios, I can personally attest to the fact that he’s a hard
guy to get ahold of—even my publisher couldn’t do it), but one does get a
sense of a person from reading their code, and the sense I get from the work
I've done in the Nagios Core source is that Ethan is a bright and meticulous
craftsman. I don’t think it’s going to be easy for him to find people he feels
have the right combination of skill and common sense to give them commit
access. Hopefully, by the time you're reading this he’ll have found at least
two or three.

The second set of bullet points, that NDOUTtils is buggy and that the Ul is
old, ugly and/or poorly designed, are legitimate in that they are undeniably
factually correct. NDOUTtils is in fact buggy, and although I don’t person-
ally have a problem with CGIs written in C, I assume most people under 40
would concede that, for better or worse, that’s just not how things are done
anymore.

Ethan, for his part, has not commented on these points, but other develop-
ers in the community have [9]. The thing is, there are quite a few deficien-
cies in Nagios Core that might cause one to consider forking, and although
the UI might be up there for some people, NDOUtils probably wouldn't
be, so I think it’s a little disorienting for most Nagios devs to see these two
issues so high on Icinga’s list. From the Icinga devs perspective, however,
these two issues are so closely related they're actually interdependent. The
relationship between NDOUtils and the Ul is subtle for the rest of us, be-
cause it revolves around a technical assumption being made by Icinga’s UI
design team. It’s an assumption that I don't think is necessary, but I do see
that it’s being made and why, so I'll attempt an explanation.

The Icinga Ul devs have a problem typical for anyone writing Nagios tools
that deal with state data: namely, there is no trivial way to ask Nagios for
the current state of a given service or host (now there’s something one would
expect to see in a list of “reasons to fork Nagios core”). So the Icinga devs
want to export state data to an interface other than the built-in Nagios Ul
(because in this case they're re-implementing that UI). As it turns out, this is
a problem these particular devs have run into before, because some of them
wrote NagViz (a visualization add-on for Nagios) during which they solved
this problem by exporting state data to MySQL using NDOUgtils. So the Ic-
inga Ul devs are using a bit of constructive laziness and making the under-
lying assumption that NDOUtils is going to be a core component of the new
PHP-based UI they’re creating.

There’s a lot 'm tempted to say about this line of thinking, but the most top-
ical point is that the design they've chosen to pursue could be implemented
in Nagios without any changes in core whatsoever. Indeed, the current ver-
sion of Icinga appears to be Nagios with a patched NDOUtils add-on and a
stand-alone PHP application reading state data from a database. The Icinga
guys don't need a fork to make this UI thing happen, and trying to fight for
mind-share for a new Ul would probably be a great deal easier than fighting
for mind-share for an entire fork. So why fork to glean functionality that you
already have? Why not just fork the NDOULtils add-on?

Another point of interest is that NDOULtils is not what I think most Nagios
admins would consider the “right answer” for this job. It’s fine for people
who want to write add-ons that need access to the daemon’s state data, but
it's not what I'd call the optimal interface to build a replacement UI around.
The Icinga guys are beyond writing add-ons here. If I were them, I'd be
looking to write my own NEB module, one that was lightweight and special-
ized to my purpose, and I'd probably avoid using an external database tier at
all. Why sync state data to an external DB, and then sync the UI to the DB?

;LOGIN: VOL. 35, NO. 1

;LOGIN: FEBRUARY 2010

Instead, why not just sync the UI directly to the daemon using a special-
ized message-passing NEB module, or even something like op5’s Merlin
[10]? Having written an NEB module or two [11], I can assure you this sort
of thing is completely within the current operational capabilities of Nagios
Core, no forking required.

But since they are forking core, they could take it one step further and fix
the actual problem inside the daemon. The more I think about it, the more
puzzling it is to me that the Icinga devs have decided on the direction they
have. Given that they’re forking Nagios core, and given that they are a smart
bunch of guys with plenty of experience hacking Nagios, this dependency
chain they’re creating between a database add-on and the core Ul just
doesn’t make sense. I would hope that if one had the opportunity to rewrite
Nagios one would consider functional improvements first and eye candy
later. State data is hard to export, so write an API that more directly exports
it, or, if databases are what you want, then internally replace the state data
file with a database. Writing the sexy UI first and then patching an already
kludgy add-on to provide it data smacks of a dangerous and extravagant
naiveté. It screams “kewlist GUI wins!” and it’s that kind of thinking that
would make me think twice about handing out CVS commit access too.

As you might have guessed by now, I'll be sticking with Nagios, but I'll also
be keeping an eye on Icinga. Hopefully, something interesting will develop
from this fork, but my real hope is that Ethan fixes the bottlenecks and
communication problems, and Nagios and Icinga can get past their differ-
ences and merge back into a single project again. The legal complications of
their parent companies makes that unlikely in the foreseeable future, but

[think it’s a net loss for the community to have to split its effort between
these two projects for any length of time. It also makes tenuous the positions
of the myriad companies out there who are providing commercial products
and services based around Nagios. These companies, such as Groundwork
[12] and op5 [13], are currently where much of the ground-breaking work
on Nagios is being done. The community loses if those companies have to
switch gears and worry about supporting a fork. Time will tell.

Take it easy.

REFERENCES

[1] http:/thread.gmane.org/gmane.network.nagios.devel/6246.

[2] http://article.gmane.org/gmane.network.nagios.devel/6267.

[3] http://article.gmane.org/gmane.network.nagios.devel/6270.

[4] http://www.mail-archive.com/nagios-users@lists.sourceforge.net/
msg21839.html.

[5] http://article.gmane.org/gmane . network.nagios.devel/6253.

[6] http://blogs.op5.org/blog4.php/2009/05/07/the-future-of-nagios.
[7] http://markmail.org/message/yba2p2p3w7aq7p4v.

[8] http:/community.nagios.org/2009/05/11/the-future-of-nagios-where-do
-we-go-from-here/.

[9] http://article.gmane.org/gmane.network.nagios.devel/6273.

[10] https://wiki.op5.org/merlin:start.

[11] http://www.usenix.org/publications/login/2008-12/pdfs/josephsen.pdf.
[12] http:// www.op5.com.

[13] http://www.groundworkopensource.com.

IVOYEUR: BREAKING UP IS HARD TO DO 89

