
29February 2004 ;login:

●

P

R
O

G
R

A
M

M
IN

G

working with C# interfaces

Suppose that you’re doing some C programming and
have a list of numbers to sort in descending order.
Instead of writing your own sort routine, you decide it
would be better to use the library function qsort. Here’s
some sample code:

#include <stdio.h>
#include <stdlib.h>

#define N 10

int cmp(const void* ap, const void* bp) {
int a = *(int*)ap;
int b = *(int*)bp;

return (a < b ? 1 : a == b ? 0 : -1);
}

int main() {
int i;
int list[N];

for (i = 0; i < N; i++)
list[i] = i;

qsort(list, N, sizeof(int), cmp);

for (i = 0; i < N; i++)
printf("%d ", list[i]);

printf("\n");
}

It is possible to make general use of the library sort function
because its interface has been standardized, and the element
comparison function has been factored out and is supplied by
the user.

Suppose that you’d like to write some equivalent C# code. What
might it look like? Here’s one way of doing it:

using System;
using System.Collections;

public class MyComparer : IComparer {

public int Compare(object aobj, object bobj) {
int a = (int)aobj;
int b = (int)bobj;

return (a < b ? 1 : a == b ? 0 : -1);
}

}

public class SortDemo {
public static void Main() {

const int N = 10;
ArrayList list = new ArrayList();

for (int i = 0; i < N; i++)
list.Add(i);

list.Sort();

for (int i = 0; i < N; i++)
Console.Write(list[i] + " ");

Console.WriteLine();

list.Sort(new MyComparer());

for (int i = 0; i < N; i++)
Console.Write(list[i] + " ");

Console.WriteLine();
}

}

When this code is run, the result is:

0 1 2 3 4 5 6 7 8 9
9 8 7 6 5 4 3 2 1 0

This approach uses an instance of the ArrayList class, a list of
objects represented using an internal array. ArrayList has a Sort
method, which sorts the objects in natural (ascending) order.
There’s also a Sort method to which you specify a comparator.
Since C# has no global functions, the idea here is that an object
of a class MyComparer is created and passed to the Sort method.
MyComparer is a class whose instances serve as wrappers for a
comparison method, the equivalent of the C comparison func-
tion.

Because the Sort method is part of a standard library class that
will call a user-supplied comparator method, there has to be
some way of uniformly specifying what such methods look like.
C# uses what are called interfaces for this purpose. In the exam-
ple above, the standard interface IComparer would be declared
like this:

public interface IComparer {
int Compare(object a, object b);

}

A class such as MyComparer then implements the interface by
defining a method Compare with the appropriate signature.
The Compare method has similar semantics to what is found in

by Glen
McCluskey
Glen McCluskey is a
consultant with 20
years of experience
and has focused on
programming lan-
guages since 1988.
He specializes in Java
and C++ perfor-
mance, testing, and
technical documen-
tation areas.
glenm@glenmccl.com

WORKING WITH C# INTERFACES ●

Vol. 29, No.1 ;login:30

C, returning -1, for example, if the first element is “less than”
the second and 1 if the first element is “greater.”

The Sort method in ArrayList is declared like this:

void Sort();

void Sort(IComparer);

The first of these declarations represents the default, and the
second has a single parameter of type IComparer, meaning that
an object of any class that implements the IComparer interface
can be passed to the Sort method.

A C# interface specifies that an implementing class will define
particular methods with specific signatures, but says nothing
about what those methods will actually do. If, for example, I
write a comparator method to be used in sorting, and that
method returns a random value (-1, 0, 1) each time it is called,
then the sorting process isn’t going to turn out very well. An
interface is a contract that specifies what, not how.

Writing Your Own Interface
When might you wish to use your own interfaces? Consider an
application where you have some objects of classes for which it
is meaningful to calculate the distance between objects. For
example, the objects might represent X,Y points on a plane or
calendar dates, and your application needs to know the distance
between any two objects.

Here’s some code that shows how an interface can be defined
and then used:

using System;

public interface IDistance {
double GetDistance(object obj);

}

public class Point : IDistance {
private int x, y;

public Point(int x, int y) {
this.x = x;
this.y = y;

}

public int GetX() {
return x;

}

public int GetY() {
return y;

}

public double GetDistance(object obj) {
Point pobj = obj as Point;
if (pobj == null)

throw new NullReferenceException();

double sum = 0;

sum += (x - pobj.x) * (x - pobj.x);
sum += (y - pobj.y) * (y - pobj.y);

return Math.Sqrt(sum);
}

}

public class DistDemo {
public static void Main() {

IDistance p1 = new Point(10, 10);
IDistance p2 = new Point(20, 20);

Console.WriteLine("distance = " + p1.GetDistance(p2));
}

}

The interface IDistance specifies a single method GetDistance.
The idea is that you have an object, and GetDistance is called to
compute the distance between that object and another:

double distance = obj1.GetDistance(obj2);

The interface doesn’t specify how the distance is computed. In
our example, we calculate the Euclidean distance between two
X,Y points.

Note that the GetDistance implementation uses the “as” opera-
tor. The IDistance interface is specified generically, to work on
any type of objects. However, when the interface is imple-
mented in the Point class, it’s only meaningful to compute the
distance between one Point and another. The “as” operator
checks whether an arbitrary object is of type Point, and, if so,
returns a Point reference. Otherwise it returns null.

Programming in Terms of Interfaces
In the previous example, you might have noticed lines of code
such as the following:

IDistance p1 = new Point(10, 10);

A class type like Point is compatible with the type of interface
that it implements, such as IDistance.

In some situations, this compatibility can serve as the basis for a
whole style of programming. Suppose, for example, that you’re
using the standard class ArrayList in your application. You can
specify method parameter types and so forth using the ArrayList
type, but it’s also possible to use IList, a system interface that
ArrayList implements. IList describes a collection that supports
indexable access to individual members.

Here’s an example of this idea:

using System;
using System.Collections;

public class IntDemo {
static void method1(IList list) {

list.Add(10);
list.Add(20);

31February 2004 ;login:

list.Add(30);
}

static void method2(IList list) {
for (int i = 0; i < list.Count; i++)

Console.WriteLine(list[i]);
}

public static void Main() {
IList list = new ArrayList();

method1(list);
method2(list);

}
}

method1 and method2 are implemented in terms of IList
instead of ArrayList.

Why does this matter? Suppose that at some later time you want
to use a class LinkedList in place of ArrayList. Arrays and linked
lists have some performance tradeoffs. For example, random
access is much faster in an array than in a linked list, but insert-
ing in the middle of a linked list is much faster than in an array.

If you program in terms of interfaces, as this example illus-
trates, then it’s possible to change the underlying implementa-
tion of a data structure without having to touch most of your
code. In the example, method1 and method2 are not pro-
grammed in terms of particular data structures such as
ArrayList, but in terms of an interface that specifies methods
like Add. Programming in this way is an example of what is
called polymorphism, or programming using a particular inter-
face without regard to the underlying implementation details.

Extending Interfaces
It’s possible to extend interfaces, just as with classes. For exam-
ple, in this code:

public interface Interface1 {
void f1();

}

public interface Interface2 : Interface1 {
void f2();

}

public class ClassA : Interface2 {
public void f1() {}
public void f2() {}

}

Interface2 extends Interface1, and ClassA must define both f1
and f2 in order to actually implement the interfaces.

Our example from the previous section uses the standard inter-
face IList. This interface extends the more general interface ICol-
lection, which defines the property Count (a count of the
number of elements in a collection) used in our example.

You can also specify that a class implement more than one
interface – for example, the IList, IComparer, and IDistance
interfaces discussed above. Implementing interfaces defines the
“implements” relationship between the class and the interface
(the term “mix in” is sometimes used to describe adding capa-
bilities to a class by implementing additional interfaces).

Testing Interface Types
If you have an object reference of interface type, it’s possible to
distinguish the underlying class type, using the “is” operator, as
in the following:

using System;

public interface IDummy {}

public class ClassA : IDummy {}

public class ClassB : IDummy {}

public class TestDemo {
static void f(IDummy obj) {

if (obj is ClassA)
Console.WriteLine("found a ClassA object");

}

public static void Main() {
IDummy obj1 = new ClassA();
f(obj1);

IDummy obj2 = new ClassB();
f(obj2);

}
}

This technique is useful for performance reasons – for example,
if you need to find out whether an IList reference actually refers
to an ArrayList, a LinkedList, or something else.

It’s also useful at times to define marker interfaces, empty inter-
faces that serve only to distinguish a particular class that imple-
ments them. Here’s an illustration:

using System;

public interface IDummy {}

public class ClassA : IDummy {}

public class ClassB {}

public class MarkerDemo {
static void f(object obj) {

if (obj is IDummy)
Console.WriteLine("found an IDummy object");

}

public static void Main() {
ClassA obj1 = new ClassA();
f(obj1);

ClassB obj2 = new ClassB();

WORKING WITH C# INTERFACES ●

●

P

R
O

G
R

A
M

M
IN

G

Integration with Inline
Perl is a great language, but there are some things that
are best left to a compiled language like C. This month,
we take a look at the Inline module, which eases the
process of integrating compiled C code into Perl pro-
grams.

Perl exists to make easy things easy and hard things possible. If
you are writing programs using nothing but Perl, thorny issues
like memory management just go away. You can structure your
program into a series of reusable Perl modules and reuse some
of the many packages available from CPAN. Things start to
break down if you need to use a C library that does not yet have
a Perl interface. Things get hard when you need to optimize a
Perl sub by converting it to compiled C code.

Languages like Perl, Java, and C# focus on helping you program
within a managed runtime environment. Reusing C libraries
cannot be done entirely within these environments. Each of
these platforms offers an “escape hatch” for those rare occasions
when compiled code is necessary. In Java, the Java Native Inter-
face (JNI) serves this purpose. In C#/.Net, programs can be
linked to “unmanaged code,” compiled libraries that live outside
the .Net environment. In Perl, integration with external libraries
is performed using XSubs and the esoteric XS mini-language.

Linking compiled code into Perl, Java, or .Net is necessary for a
minority of projects. It is one of those “hard things that should
be possible.” Compared to Perl Java and .Net, Perl’s XS interface
is the oldest and admittedly the least easy to use. XS is a mix of
C, C macros, and Perl API functions that are preprocessed to
generate a C program. The resulting C source is then compiled
to produce a shared object file that is dynamically linked into
Perl on demand, where it provides some Perl-to-C interface
glue and access to other compiled code, such as a library to
manipulate images, an XML parser, or a relational database
client library.

Creating an XS program is a little tricky. The mini-language
itself is documented in the perlxs manual page and the perlxstut
tutorial that come with Perl. XS programs may need to call Perl
API functions, which are documented in the perlguts and perl-
api manual pages. You can find more information in books like
Programming Perl, Writing Perl Modules for CPAN, and Extend-
ing and Embedding Perl.

To create simple XS wrappers around compiled libraries, start
by preprocessing a C header file with the h2xs tool and write
additional XS wrapper functions as necessary. Another com-
mon approach uses swig to create the necessary wrapper code
without using XS explicitly. If you are knowledgeable about Perl
internals, you might avoid both approaches and write XS inter-
face code from scratch.

Writing XS wrappers is tricky, and the skill is difficult to learn.
Many long-time Perl programmers avoid XS because of its
complexity. The state of XS is one of the factors that led the Perl
development team to start the Perl 6 project. One of the goals
behind Perl 6 is the creation of a new runtime engine, Parrot,
that provides a substantially simplified interface for integrating
with compiled code.

Enter Inline::C
One day at the Perl Conference in 2000 (shortly after the Perl 6
project was announced), Brian Ingerson had an epiphany. Link-
ing Perl to compiled C programs is one of those “hard things

by Adam Turoff
Adam is a consultant
who specializes in
using Perl to manage
big data. He is a
long-time Perl Mon-
ger, a technical editor
for The Perl Review,
and a frequent pre-
senter at Perl confer-
ences.
ziggy@panix.com

32 Vol. 29, No. 1 ;login:

practical perl

f(obj2);
}

}

You can use this technique to give a group of classes a particular
property that can be distinguished at runtime.

Interfaces are quite useful in specifying required behavior, and
they enable you to program in terms of high-level types without
having to get into implementation details.

