
{

THE USENIX MAGAZINE

December 2003 • volume 28 • number 6

#
The Advanced Computing Systems Association

inside:
SECURITY

Perrine: The End of crypt() Passwords

. . . Please?

Wysopal: Learning Security QA from

the Vulnerability Researchers

Damron: Identifiable Fingerprints in

Network Applications

Balas: Sebek: Covert Glass-Box Host Analysis

Jacobsson & Menczer: Untraceable Email Cluster Bombs

Mudge: Insider Threat

Singer: Life Without Firewalls

Deraison & Gula: Nessus

Forte: Coordinated Incident Response Procedures

Russell: How Are We Going to Patch All These Boxes?

Kenneally: Evidence Enhancing Technology

BOOK REVIEWS AND HISTORY

USENIX NEWS

CONFERENCE REPORTS

12th USENIX Security Symposium

Focus Issue: Security
Guest Editor: Rik Farrow

16

It is important for both an attacker and a defender to know exactly what is

running on a target system. Knowing not only the specific application but

also the version number allows one to enumerate the vulnerabilities that are

present. Application fingerprinting is a method of determining the type and

version of an active network server or client. This is an advanced technique

that replaces banner grabbing for situations where a banner doesn’t exist or

has been removed or obscured.

Typically, banner grabbing consists of initiating a connection to a network server and
recording the data that is returned at the beginning of the session. This information
can specify the name of the application, version number, and even the operating sys-
tem that is running the server. Other protocols require that a request first be made,
with the resulting response holding the server information.

Savvy administrators have started removing or obscuring this data, making banner
grabbing useless or misleading. For instance, an Apache server can be modified to
respond with the banner of a Stronghold, an ISS/5.0, or a completely contrived server.
Adversaries may then unknowingly choose attacks that will not affect the real Apache
server. This method of security through obscurity (while not a good practice by itself)
can be a profound gain, since the time it takes to obscure is far less than the time and
effort it can take to overcome it.

Application fingerprinting is the field of study that can be used to overcome ambiguity
and misdirection. It can be used actively or passively to detect fine distinctions in net-
work programs that give away specific product and version information. Because of
this, security through obscurity can definitely increase the challenge but cannot com-
pletely remove the threat of a determined attacker’s ability to identify the running ser-
vice. Some have started to undertake the task to counter this “raising of the bar” and
are providing tools such as amap and vmap.1

What to Fingerprint?
Any active service on a network can be fingerprinted to some extent. Passively watch-
ing the traffic flow by is one method of fingerprinting, but it relies on fingerprints
found in normal traffic. This is most efficient when banners are present within the
information transfer. However, when banners are not present this method can lose
granularity, and it may take a large volume of traffic for the different variations
required to precisely determine the application and version information. Active
approaches yield much faster results, since the traffic can be intelligently chosen in
order to focus the identification process.

Client software can also be fingerprinted. This can be important knowledge in pre-
venting a network breach due to a client-side security flaw. Rogue Internet servers
could be loaded with potentially damaging payloads for vulnerable Web browsers, chat
clients, media players, or other client programs. These rogue servers could potentially
force the traffic of the conversation in a way that will uniquely identify the client. At
that point, it could respond with malicious content targeted to the specific client, pro-
ducing a higher probability of success.

identifiable finger-
prints in network
applications

1. “The Hacker’s Choice – Releases,”
http://www.thc.org/releases.php.

Vol. 28, No. 6 ;login:

by Jason Damron

Jason Damron has
been involved in net-
work security for 10
years. He is currently
the lead developer of
the Dragon Network
Intrusion Detection
System for Enterasys
Networks.

jdamron@enterasys.com

http://www.thc.org/releases.php

Fingerprinting unknown ports may be somewhat more complicated, because the pro-
tocol must be determined first. Banner grabbing can start with the initial return, but if
the banner is obscured, deeper inspection must occur. This process may break down to
simple trial and error, cycling through the protocols that have been researched.

Even typically passive devices such as an Intrusion Detection System could be identi-
fied if set up for active response. An attacker could force traffic to be emitted, trigger-
ing a defensive measure such as a TCP session termination. Then by examining the
returning traffic for the number of TCP RST packets sent, how fast the sequence num-
bers grow in attempting to catch up to the ongoing traffic, static values such as IP
identity field, and other possible indicators, the fingerprinting software can determine
the make and model of the IDS.

How Is It Possible?
Application fingerprinting works because all actively developed software evolves. New
software versions typically include some combination of bug fixes, updates, rewrites,
and completely new features. If any of these affect its network presence, it allows the
software to be uniquely identified from its predecessors.

The fact that some applications can be uniquely identified by a remote agent is not a
vulnerability in the software. In fact, it can be viewed as the opposite, in that vulnera-
bilities are being removed, which can change the network’s characteristics. Ideally,
developers who become conscious of this will choose to create a normalized network
interface. They could allow modified interactions to take place only when needed by
new functionality configured to be active by the user. Alternatively, they could allow
configurations that removed unneeded functionality to retain the conventional inter-
action.

Intrusion Detection
Intrusion detection systems have started applying banner grabbing and modeling
technologies. An example of this would be picking out the Sendmail banner and
remembering what it is for future reporting, or generating an event immediately if it is
known to be vulnerable.

An implementation of application fingerprinting could be the identification of a DNS
server from observing a normal DNS conversation. Typical DNS traffic does not
include any version information to trigger current systems. However, with careful
research it may be possible to detect nuances of the conversation that give away the
type and version of the DNS server. At this point, the IDS can respond like any other
fingerprinting system – by learning and applying that knowledge to present more
intelligent alerts.

Another example could be the security administrator of a large enterprise who doesn’t
own or operate all of the Web servers. If one of his users makes the effort to obscure
the server type and version, they have also obscured it from the IDS. However, if the
IDS can monitor enough conversations to determine the type and version, it can then
generate events with better information about whether the server was susceptible to
the attack.

The above examples are narrow in scope, since they assume a standard port or that the
underlying protocol is at least known. A broader version of this idea is an application
fingerprinting engine. This engine could be fed by any unencrypted network traffic

17December 2003 ;login:

Intrusion detection systems

have started applying banner

grabbing and modeling

technologies.

IDENTIFIABLE FINGERPRINTS �

�
SE

C
U

RI
TY

Vol. 28, No. 6 ;login:

and first determine the protocol, then move to the type of server/client, and finally,
identify the version (if possible). For instance, if a user decided to hide and obscure a
Web server on port 44322, an engine such as the one described above could attempt to
determine all of the server characteristics to enable the enhanced reporting available
for that application.

Case Study: Apache 1.3.x
WHY APACHE?

Apache is the most widely utilized Web server in the world.2 It is also open source, so
code for every version can be downloaded and checked for differences. Previous ver-
sions are available at http://archive.apache.org/dist/httpd/old/. Other good choices to
examine for fingerprints would be BIND and Sendmail. Both are used extensively, and
source code for the current and prior versions is freely available. Also, both BIND3 and
Sendmail4 have had security-related issues in the past, which makes it more important
to be able to identify any non-current servers.

Please note that this is not a vulnerability of the Apache Web server. As Apache grows
and evolves there will be changes, and some will cause its network presence to change.

TEST SETUP

For this case study, we will assume default installations of Apache servers. The only
changes made to the configuration were to make each version listen on a different port
for concurrent testing and to start a single instance of the server, since performance
will not be an issue. Also, the scope of this research was limited to UNIX versions of
the server.

WHERE TO START

The safest and most direct method is to make simple requests. A query
for the DocumentRoot can provide useful information such as the
options that are present, the order of the options, syntax of the options,
and maybe the default Web page, all of which can be used to identify
the server. This information is more likely to help determine the type of
server rather than an exact version.

Next, simple request errors can be made, such as requesting pages that
are not present or leaving out required headers (HTTP/1.1 requires that
the Host: header be present). However, because not all Web servers are
as robust as Apache, these types of attempts to fingerprint may cause
poorly implemented servers to crash.

The accompanying matrix illustrates three simple requests that can be
used to narrow down the version of Apache that is being run. They are
listed in order of obtrusiveness, starting with the safest method.

As can be seen , several of the unique characteristics of a default Apache
installation revolve around its ability to negotiate. The first test uses the
existence of the Transparent Content Negotiation (TCN) header in any
response to divide up the versions. Versions 1.3.11 to 1.3.27 can be bro-
ken down further by submitting Accept: statements with an invalid
type to force the server to present all known content types. Over time,

2. “Netcraft: Web Server Survey Archives,”
http://news.netcraft.com/archives/Web_server_
survey.html.

3. Internet Software Consortium: BIND Vulner-
abilities, http://www.isc.org/products/BIND/
bind-security.html.

4. Vulnerabilities found by searching Security-
Focus vulnerability archive for “Sendmail Con-
sortium,” http://www.securityfocus.com/bid/
{2794, 2897, 3377, 3378, 4822, 3163, 5770, 5921,
6548, 5845, 5122, 7614, 7829, 6991, 7230, 8485}.

18

Apache Version
TCN

Present
Negotiation

Options
Bad Method
(HEAD 1)

1.3.27 X
Fewer than 24
(missing .lu)

Error 1, 4, 5

1.3.22 Similar to 23 Error 2, 4, 5

1.3 {12, 14, 17,
19, 20, 23, 24, 27}

X
Only 17 and 19

match
Error 1, 4, 5

1.3.11 X Fewest options Error 1, 4, 5

1.3 {4, 6, 9} None Error 1, 4, 5

1.3.3 None Error 1, 5

1.3.2 None Error 3, 5

1.3 {0, 1} None Error 1

Returning Error includes:

1. HEAD1 to /index.html not supported.<P>
2. Same as above except URL reads /index.html.en
3. Invalid method in request HEAD1 / HTTP/1.1<HR>
4. Same as above but ends with <P>\n<HR>
5. <ADDRESS> tag present

http://archive.apache.org/dist/httpd/old/
http://news.netcraft.com/archives/Web_server_
http://www.isc.org/products/BIND/
http://www.securityfocus.com/bid/

the supported content types have changed in the default configuration and this can be
used to determine the specific versions. The older versions can be broken down fur-
ther by submitting improper requests and checking for uniqueness in the results. Some
of the releases, such as 1.3.{4,6,9}, have very few functional changes in the protocol
code, which makes version distinction very difficult. In those cases, fingerprinting may
become dependent on the additional modules that have been loaded.

RAISING THE BAR HIGHER

The first step in disguising an application is to enable only the functionality you
require. The more functionality that is utilized by the network server, the greater the
chance for identifying anomalies to be present. Likewise, you don’t want to expose
yourself to potential security risks that may exist in unnecessary functionality.

The next step is to create a custom configuration to remove as many default responses
as possible. Some software does not provide enough flexibility to remove any standard
replies. In these cases, either source modifications or binary editing would be required
to create the necessary obfuscation. The following are some examples of the options
Apache administrators have to increase the complexity required to determine the ver-
sion information.

Starting with the 1.3.x tree, Apache introduced the ServerTokens directive, which
allows the administrator to manipulate the responding Server: header by applying it to
the httpd.conf file. However, the version information was always present until version
1.3.12, when it allowed the Prod[uct Only] option, which limits the display to just
“Apache.”

To further obfuscate the Server: response header, a simple change can be made in the
source code. The include file {ApacheTree}/src/include/httpd.h contains #define state-
ments for the product information. The product name can be changed to read:

#define SERVER_BASEPRODUCT "GuessMe"

Then setting the ServerToken directive to Prod[uct Only] will cause Apache to answer
with the following “Server” header:

Server: GuessMe

The ErrorDocument directive can also be used to deter inquisitive minds from uncov-
ering the type and version of the server. This option, when placed within the httpd.conf
file, allows Apache to serve up custom error pages which will remove some of the low-
hanging fruit of fingerprinting.

The following is an example of using ErrorDocument to remove identifiers:

ErrorDocument 500 /standard-error.html
ErrorDocument 404 /standard-error.html

The negotiation alternatives of an Apache server can be modified in the httpd.conf file.
When the mod_mime module is enabled, only the languages and character sets that
need to be supported should be included, using the AddLanguage and AddCharset
directives. Also, if the mod_negotiation module is enabled, the language priority list
should also be altered to reflect only languages that are required. The following is a

19December 2003 ;login:

The first step in disguising an

application is to enable only

the functionality that you

require.

�
SE

C
U

RI
TY

IDENTIFIABLE FINGERPRINTS �

Vol. 28, No. 6 ;login:

modified section of the httpd.conf file that limits the language priority to only English
(en) and German (de):

<IfModule mod_negotiation.c>
#LanguagePriority en da nl et fr de el it ja kr no pl pt pt-br ru ltz ca es sv tw
LanguagePriority en de

</IfModule>

Following the procedures specified above negates many of the fingerprinting tech-
niques discussed and takes a surprisingly small amount of time. Without making these
changes, creating fingerprints for individual versions of Apache is a time-consuming
task. Spending the extra time to customize the configuration can remove unique char-
acteristics, which causes the application fingerprinting to become much more difficult.

20

Statement of Ownership, Management, and Circulation, 10/01/03

Title: ;login: Pub. No. 0008-334. Frequency: Bimonthly. Subscription price $110 individuals and institutions. Office of publication:
USENIX Association, 2560 9th Street, Suite 215, Berkeley, Alameda County, CA 94710. Headquarters of Publication: Same. Pub-
lisher: USENIX Association, 2560 9th Street, Suite 215, Berkeley, CA 94710. Editor: Rob Kolstad. Managing Editor: Alain Hénon, all
located at office of publication. Owner: USENIX Association. The purpose, function, and nonprofit status of this organization and
the exempt status for Federal income tax purposes has not changed during the preceding 12 months.

Extent and nature of circulation Average no. of copies of each issue in Actual no. of copies of single
preceding 12 months issue published nearest to filing

A. Total no. of copies 8,068 7,550
B. Paid and/or Requested Circulation

Outside-County Mail Subscriptions 5,223 5,111
In-County Subscriptions 148 0
Sales through Dealers 2,179 1,945
Other Classes 0 0

C. Total Paid and/or Requested Circulation 7,550 7,056
D. Free Distribution by Mail

Outside County 0 0
In-County 0 0
Other Classes 32 33

E. Free Distribution Outside the Mail 333 400
F. Total Free Distribution 365 432
G. Total Distribution 7,915 7,488
H. Copies Not Distributed 199 515
I. Total 8,068 7,550
Percent Paid and/or Requested Circulation 94% 93%

I certify that the statements made by me above are correct and complete.
Alain Hénon, Managing Editor

