
{

THE USENIX MAGAZINE

December 2003 • volume 28 • number 6

#
The Advanced Computing Systems Association

inside:
SECURITY

Perrine: The End of crypt() Passwords

. . . Please?

Wysopal: Learning Security QA from

the Vulnerability Researchers

Damron: Identifiable Fingerprints in

Network Applications

Balas: Sebek: Covert Glass-Box Host Analysis

Jacobsson & Menczer: Untraceable Email Cluster Bombs

Mudge: Insider Threat

Singer: Life Without Firewalls

Deraison & Gula: Nessus

Forte: Coordinated Incident Response Procedures

Russell: How Are We Going to Patch All These Boxes?

Kenneally: Evidence Enhancing Technology

BOOK REVIEWS AND HISTORY

USENIX NEWS

CONFERENCE REPORTS

12th USENIX Security Symposium

Focus Issue: Security
Guest Editor: Rik Farrow

21December 2003 ;login:

Covert Glass-Box Host Analysis
Introduction
To defeat your enemy you must know your enemy. For individuals who run
networks or network services, anyone who attempts to gain or deny access
in an illegitimate manner may be considered an enemy. One tool that
allows us to learn about this enemy is the honeypot.

A honeypot is a host whose value lies in being compromised by an intruder (see
http://project.honeynet.org/papers for more details). A “high-interaction honeypot” is
nothing more than a regular host that is closely monitored; as an intruder breaks in,
the researcher monitors the actions of the intruder on the honeypot.

The key to the honeypot concept is the capturing of intruder activities. For such data
to be of use it is critical that an intruder not detect that his or her actions are being
captured. If captured correctly this data allows one to identify the tools, techniques,
and motives of the intruder.

Today, packet captures using libpcap are the most common data capture technique.
Tools that use this technique include Snort, ethereal, p0f, and many more. However,
the increased use of session encryption has made packet captures increasingly inade-
quate for observing attackers. In response to this trend, the Honeynet Project has
developed a new tool called Sebek for the circumvention of such encryption. This
paper will be an introduction to the Sebek data capture system and the broader
impacts of this new type of forensic data.

The Goals of Data Capture
For any data capture technique, we want to determine information such as when an
intruder broke in, how they did it, and what they did after gaining access. This infor-
mation can, potentially, tell us who the intruder is, what their motivations are, and
who they may be working with. Specifically there are two very important things we
want to recover: the attacker’s interactions with the honeypot, such as keystrokes, and
any files copied to the honeypot.

Data Capture Techniques and Their Limits
When encryption is not used, it is possible to monitor the keystrokes of an intruder by
capturing the network activity off of the wire and then using a tool like ethereal
(which is excellent for this work) to reassemble the TCP flow and examine the con-
tents of the session. This technique yields not only what the intruder typed but also
what the user saw as output. Stream reassembly techniques provide a nearly ideal
method to capture the actions of an intruder when the session is not encrypted. When
the session is encrypted, stream reassembly yields the encrypted contents of the ses-
sion. To be of use these must be decrypted. This route has proven quite difficult for
many. Rather than trying to break the encryption of a session, we have looked for a
way to circumvent encryption.

Information that is encrypted must at some point be decrypted for it to be of any use.
The process of circumvention involves capturing the data post-decryption. The idea is
to let the standard mechanisms do the decryption work, and then gain access to this
unprotected data.

sebek

SEBEK ●

●
SE

C
U

R
IT

Y

by Edward Balas
As a network secu-
rity researcher at
Indiana University’s
Advanced Network
Management Lab
and Honeynet Pro-
ject team member,
Edward Balas has
focused on network
infrastructure protec-
tion. Edward’s pro-
fessional interests
include Network
Monitoring and Traf-
fic Analysis, as well
as advanced hon-
eynet data capture
techniques.

ebalas@iu.edu

Vol. 28, No. 6 ;login:

The first attempts to circumvent such encryption took the form of trojaned binaries.
When an intruder broke into a honeypot, he or she would then log into the compro-
mised host using encrypted facilities such as SSH. As they typed on the command line,
a trojaned shell binary would record their actions.

To counter the threat posed by trojaned binaries, intruders started to install their own
binaries. It became apparent that the most robust capture method involved accessing
the data from within the operating system’s kernel. When capturing data from within
the kernel, the intruder can use any binary they wish, and we are still able to record
their actions. Further, because user space and kernel space are divided, there is ample
opportunity to improve the subtlety of the technique by hiding our actions from all
users, including root.

The first versions of Sebek were designed to collect keystroke data from directly within
the kernel. These early versions were the equivalent of a souped-up Adore rootkit that
used a trojaned sys_read call to capture keystrokes. This system logged keystrokes to a
hidden file and exported them over the network in a manner to make them look like
other UDP traffic, such as NetBIOS. This system allowed users to monitor the key-
strokes of an intruder, but it was complex, it was easy to detect through the use of a
packet sniffers, and it had a limited throughput. The latter made it difficult to record
data other than keystrokes.

The next and current iteration of Sebek, version 2, was designed not only to record
keystrokes but all sys_read data. By collecting all data, we expanded the monitoring
capability to all activity on the honeypot, including keystrokes and secure file transfers.
If a file is copied to the honeypot, Sebek will see and record the file, producing an
identical copy. If the intruder fires up an IRC or mail client, Sebek will see those mes-
sages.

The Sebek Design
Sebek has two components, a client and server. The client
captures data off of a honeypot and exports it to the net-
work, where it is collected by the server (see Fig. 1). The
server collects the data from one of two possible sources.
The first is a live packet capture from the network; the sec-
ond is a packet capture archive stored as a tcpdump for-
matted file. Once the data is collected, it is either uploaded
into a relational database or the keystroke logs are imme-
diately extracted.

Client Data Capture
Data capture is accomplished with a kernel module, which
allows us access to the kernel space of the honeypot. Using
this access, we then capture all read() activity. Sebek does
this by replacing the stock read() function in the system

call table with a new one. The new function simply calls the old function, copies the
contents into a packet buffer, adds a header, and sends the packet to the server. The act
of replacing the stock function involves changing one function pointer in the system
call table.

When a process calls the standard read() function in user space, a system call is made.
This call maps to an index offset in the system call table array. Because Sebek modified

22

Figure 1

the function pointer at the read index to point to its own implementation, the
execution switches into the kernel context and begins executing the new Sebek
read call. At this point Sebek has a complete view of all data accessed with this sys-
tem call. This same technique could be used for any system call that we may wish
to monitor.

Data that remains encrypted is of little use; to view the data or act on it in some
way it must be decrypted. In the case of an SSH session, the keystrokes are
decrypted and sent to the shell to have actions performed. This act typically
involves a system call. By collecting data in kernel space, we can gain access to the
data within the system call, after it has been decrypted but before it has been
passed to the process that is about to use it. Thus we circumvent the encryption
and capture the keystrokes, file transfers, Burneye passwords, etc.

To make the presence of the Sebek module less obvious, we borrow a few tech-
niques used in modern LKM-based rootkits such as Adore. Because Sebek is
entirely resident in kernel space, most of the rootkit techniques no longer apply;
however, hiding the existence of the Sebek module is one example of direct techno-
logical benefit derived from its rootkit heritage. To hide the Sebek module we install a
second module, the cleaner. This module manipulates the linked list of installed mod-
ules in such a way that Sebek is removed from the list. This is not a completely robust
method of hiding, and techniques for detecting such hidden modules do exist.1

There are two side effects of this removal: Users can no longer see that Sebek is
installed and, once it is installed, they are unable to remove the Sebek module without
rebooting.

Client Data Export
Once the Sebek client captures the data, it needs to send the data to the server
without being detected. If Sebek were simply to send the data to the server over a
UDP connection, an intruder could simply check for the presence of such traffic
on the LAN to determine whether Sebek was installed. Sebek does send data to the
server using UDP, but first it modifies the kernel to prevent users from seeing
Sebek packets, not just the packets generated by the local host, but any appropri-
ately configured Sebek packet. Next, when Sebek transmits data onto the network,
it ensures that the system cannot block the transmission or even count the packets
transmitted.

Because Sebek generates its own packets and sends them directly to the device
driver, there is no ability for a user to block the packets with iptables or monitor
them with a network sniffer. This prevents an intruder on a honeypot from
detecting the presence of Sebek by examining the LAN traffic.

The Broader Impact
Not too long after development, it became clear that not only was Sebek allowing
us to circumvent encryption, but it was providing a previously unavailable source
of data. Sebek was allowing us to look at the honeypot as a glass box rather than a
black box. It was easy to monitor the keystrokes of an intruder, but we could also
observe the actions of applications that never send data over the network. We ini-
tially tried to filter such data, but eventually we realized that such data could help
researchers understand the intention and functioning of an unknown and poten-
tially hostile binary installed on a system.

23December 2003 ;login:

●
SE

C
U

R
IT

Y

Figure 2

Figure 3

SEBEK ●

1. Phrack issue 61 has an article on detecting
hidden kernel modules in its Linenoise section.
The article describes a brute-force method for
detecting hidden modules by looking for what
appears to be the key module structure.

Vol. 28, No. 6 ;login:

We haven’t been the only ones to take notice of the potential power of this monitoring
technique. Recently, a paper was published on a site purporting to be affiliated with
the computer security group Phrack. This paper not only covered the risks associated
with running honeynets, but also provided techniques used to detect and disable
Sebek. (The honeynet site has a mirrored copy of the article at http://www.honeynet.
org/papers/honeynet/anti-honeypots.txt.) Once these techniques trickle down to the
least skilled form of attacker, the script kiddie, it is anticipated that checking for Sebek
on a compromised host will be common practice. The most common technique
involves installing a kernel module that attempts to reset the system call table.

The Future
In the near future, the primary goal is to ensure that Sebek is stable and can identify or
perhaps even withstand attempts by attackers to disable it. The second priority will be
Sebek data analysis. Within the Sebek data we see repeating patterns that are indica-
tions of illegitimate privilege escalation. Just as network-based intrusion detection sys-
tems examine libpcap data for patterns that represent known bad events, it is
anticipated that an IDS based on Sebek data could be developed to detect bad events at
the host level. Further, for a few situations it may be that such rules can be contained
with the Sebek client, and when the client detects such a situation it would cause the
kernel to take remedial action. This would be equivalent to a host-based intrusion pre-
vention system.

Summary
Sebek is a kernel-based data capture tool that was originally designed to covertly mon-
itor activity on a honeypot. Sebek circumvents encryption by capturing the activity in
kernel space, where it is in an unencrypted form. Because of this we can capture key-
strokes, recover passwords, and monitor any communication including IRC chats,
email, and SSH/SCP activity.

Sebek allows an excellent view into the internal activities on a honeypot. Its methodol-
ogy has not only provided a way to circumvent session encryption but also captures an
entirely new type of data. This new data type may lead to the development of new
technologies that will help make general-purpose systems more secure.

More information on the Sebek data capture system can be found at http://www.
honeynet.org/tools/sebek/.

Once these techniques trickle
down to the least skilled form
of attacker, the script kiddie,
it is anticipated that checking
for Sebek on a compromised
host will be common practice.

24

