December 2003 e volume 28 e number 6

inside:

SECURITY

Perrine: The End of crypt() Passwords
. . . Please?

Wysopal: Learning Security QA from
the Vulnerability Researchers

Damron: Identifiable Fingerprints in
Network Applications

Balas: Sebek: Covert Glass-Box Host Analysis

Jacobsson & Menczer: Untraceable Email Cluster Bombs

Mudge: nsicr Threat Focus Issue: Security

Singer: Life Without Firewalls
Deraison & Gula: Nessus Guest Editor: Rik Farrow

Forte: Coordinated Incident Response Procedures
Russell: How Are We Going to Patch All These Boxes?
Kenneally: Evidence Enhancing Technology

BOOK REVIEWS AND HISTORY

USENIX NEWS

CONFERENCE REPORTS

12th USENIX Security Symposium USENIX

The Advanced Computing Systems Association

42

by Renaud
Deraison

Renaud Deraison is
the original author of
Nessus and the man-
ager of the Nessus
project. Nessus is the
world's most popular
vulnerability scanner
and has more than
50,000 users.

deraison@nessus.org

and Ron Gula

Ron Gula is the CTO
and co-founder, with
Renaud Deraison, of
Tenable Network
Security, which funds
the Nessus project
and produces enter-
prise security man-
agement tools, as
well as a variety of
commercial active
and passive vulnera-
bility scanners.

N
:
£

rgula@tenablesecurity.com

NEeSSUS

The basic concept of conducting a network vulnerability assessment is to
find security flaws so that they can be fixed before they are exploited. Nes-
sus is a free, powerful, and easy-to-use network vulnerability scanner. It is
an open source tool that is available at http://www.nessus.org for most
UNIX operating systems.

Like most vulnerability assessment tools, Nessus performs a network vulnerability
audit by first determining which hosts are alive, which applications are present, and
then which vulnerabilities may be present. It has many techniques to determine all of
this information and is constantly updated with new features and new vulnerability
checks. Nessus also takes a closer look into the network and can identify unneeded
servers or services that can have a greater long-term impact on security.

Nessus Architecture

Nessus can be deployed in a permanent or stand-alone configuration. Nessus installa-
tions consist of one or more “Nessus daemons,” which are servers that perform the
actual vulnerability testing, and one or more “Nessus clients,” which are the control
points to launch scans and review the collected data.

For single-host Nessus installations, such as a laptop, a user would install both the
Nessus client and the Nessus daemon. In order to run a vulnerability scan, the Nessus
daemon needs to be started first and then the Nessus client can be launched.

The client-server architecture of Nessus also makes it possible to deploy permanent
“scanners” and have multiple users share them as a resource. For example, a Nessus
daemon could be installed on a secured OpenBSD server located outside of a univer-
sity network. This Nessus daemon can be connected to any Nessus client (with proper
credentials such as a username/password or a certificate) to perform a scan. Multiple
users can perform these scans simultaneously. Each user account on a Nessus daemon
can also be restricted such that they can only scan a specific range of IP addresses.

Nessus Attack Scripting Language

The heart of Nessus’s power and flexibility is the Nessus Attack Scripting Language
(NASL). This interpreter is yet another computer language, but this one has the advan-
tage of being a portable language designed to do network vulnerability checks. The
syntax of NASL is beyond the scope of this article, but full documentation and almost
2000 examples are available at the Nessus Web site.

In version 2 of Nessus, this language was completely rewritten to improve speed and
performance. A variety of built-in functions were also added, such as the ability to
evenly slice IP ranges rather than just scanning sequentially. Almost any type of net-
work vulnerability action can be coded with NASL. Some examples include generating
a specific packet for a DoS attack, completing a TCP handshake to observe a banner
string, and completing an NTLM authentication to a Windows primary domain con-
troller.

Individual NASL scripts can be run alone. This is useful for testing, or building a set of
scripts which are not run by the Nessus daemon. To test a NASL script, simply run the
command nasl -t <IP Address> <script name> and the script will be attempted. What
is more useful is that the entire processing of NASL can be viewed with the -T option,
which can trace each step of the script and record it to a specific file for analysis. This
makes writing custom NASL scripts and modifying existing ones extremely easy.

Vol. 28, No. 6 jlogin:

All Nessus plugins are open source and can be inspected by the Nessus user commu-
nity. The Nessus project also attempts to maintain each original author’s copyright
information.

Installing Nessus

Nessus source code, pre-built binaries, and even automated Internet installations are
available from a variety of mirror sites and from http://www.nessus.org. All Nessus
build scripts are very robust and will complain if certain packages are missing from the
desired target platform for Nessus.

On most UNIX systems, the easiest (and most insecure) way to install Nessus is with
the simple command

lynx —source http://install.nessus.org | sh

Though easy, this command allows an attacker who has gained control or influence
over your DNS service to redirect you to another site and provide different code for
you to execute.

A more secure way to retrieve Nessus is to download the nessus-installer.sh tool from
the Nessus Web site. This shell archive is a complete Nessus source distribution, which
also automates the build process. PGP-signed MDS5 signatures are also provided at the
site for verification of the distributed content.

A compile-time decision that needs to be made is whether the X Windows Nessus
client is needed. Without X Windows, there is no GUI for the Nessus client. This is not
a problem, since Nessus is readily configurable from the command line and also from
a variety of Nessus clients (some for Microsoft Windows platforms) that are main-
tained outside of the Nessus project. If an X Windows GUI is desired, then the graphi-
cal toolkit (GTK) library needs to be present on your desired flavor of UNIX. Most
fully loaded installations of Linux or RedHat have the required libraries already
installed. There are additional directions to install and compile the Nessus client with
GTK support at http://www.nessus.org/nessus_2_0.html.

Once Nessus is downloaded and compiled, it will prompt the user for a few post-
installation configuration options. These will prompt the user to generate a unique
cryptographic certificate for the Nessus daemon and to create at least one Nessus
“user” for the Nessus daemon. This user account will be used by the Nessus client to
log into the Nessus daemon and launch a scan.

Starting Nessus and Launching a Command Line Scan
To start the Nessus daemon, simply use the command
nessusd -D

This will invoke the Nessus daemon and leave one process running. If the Nessus dae-
mon is performing a scan, it will fork and several dozen Nessus daemon processes may
become active.

By default, the Nessus daemon will listen for Nessus client TCP connections on port
1241. Nessus’s man pages also do an excellent job of describing the location of the var-
ious configuration and logfiles for the Nessus daemon.

When Nessus is installed, it comes with the most recent vulnerability checks available.
In the future, new vulnerability checks will be downloadable from the Nessus project

December 2003 ;login: NESSUS

SECURITY

43

44

by typing the command nessus-update-plugins. If you are behind a Web proxy, this
script needs to have some internal variables edited such that it can access the Internet
through your proxy. Some Nessus users choose to create a cron job to schedule a
download of the updated Nessus plug-ins once per day or once per week.

The Nessus command line client has a variety of features, and there are many ways to
launch a scan. What follows is a very quick example to illustrate how easy it is for Nes-
sus to do a scan.

To verify that the Nessus client and Nessus daemon can talk, we will invoke the client
to ask the daemon for a list of scanning sessions (of which there should not be any). If
there is a communications problem, such as the wrong port, IP address, username or
password, we will get an error. If things are configured correctly, we will then move on.
Here is the command to try to log onto our Nessus daemon (on the same server) with
an example username and password of user and pass:

nessus -m -q 127.0.0.1 1241 user pass

If the Nessus client and daemon are on the same server, this command can be modi-
fied using the -x option to disable certificate checks:

nessus -m -q -x 127.0.0.1 1241 user pass

Otherwise, Nessus may ask for guidance as to how it should attempt to encrypt the
access between the Nessus client and daemon, with the following message:

Please choose your level of SSL paranoia (Hint: if you want to manage many
servers from your client, choose 2. Otherwise, choose 1, or 3, if you are
paranoid).

Choosing 2 allows one Nessus client to access multiple Nessus daemons as long as
their username and password are known. Options 1 and 3 are for PKI-style deploy-
ments of Nessus daemons and are not covered in this article. The Nessus client will
continue to prompt the user to verify whether a specific certificate is correct.

Normally, with a GUI tool, the GUI handles selection of which vulnerability checks to
run and how the Nessus daemon should perform. This information is stored in a hid-
den configuration file named .nessusrc and is located in your home directory. When-
ever a scan is run (from the GUI or from the command line), this file is overwritten.
Without a GUI, though, invoking the Nessus client with the -m —q option is the right
way to make the default configuration file for Nessus.

For a set of networks or IP ranges to be scanned, they must be specified and listed in
one file. To specify an IP address, simply list it. To specify a range of addresses, CIDR
blocks and ranges can be used. All target IP addresses need to be concatenated onto
one line and should be saved into a file for use by the Nessus client. The following lines
are example valid target IP specifications:

10.10.20.23
10.10.20.0/24
10.10.20.40-33
10.10.20-30.40-45

That last example would scan each class C network from 10.10.20.0/24 to
10.10.30.0/24, but would only scan hosts .40 through .45 within each network.

Vol. 28, No. 6 jlogin:

For our example, let’s call the file to put this information into the “targets.txt” file. The
Nessus client will need to know this, and which file it should output its data to.

nessus -q 127.0.0.1 1241 user pass ./targets.txt output.nsr

This will launch a scan against the systems contained on the first line of the targets.txt
file. Watching the processes for nessusd while scanning is ongoing reveals what the
particular instance of nessusd is attempting to do. For example:

nessusd: testing 127.0.0.1 (/usr/local/lib/nessus/plugins/roads_cgi.nasl)
could be a typical test.

While the Nessus daemon is active, a trace of its progress can be found by watching its
logfile:

tail -f /usr/local/var/nessus/logs/nessusd.messages

Once the scan is completed, the Nessus client will write a report as shown in the exam-
ple below:

127.0.0.1|http (80/tcp)|11408|INFO|;The remote host appears to be running a
version of;Apache 2.x which is older than 2.0.43;;This version allows an
attacker to view the source code;of CGl scripts via a POST request made to a
directory;with both WebDAV and CGI enabled.;;*** Note that Nessus solely
relied on the version number;*** of the remote server to issue this warning.
This might;*** be a false positive;;Solution : Upgrade to version 2.0.43;See
also : http://www.apache.org/dist/httpd/CHANGES_2.0;Risk factor :
Medium;CVE : CAN-2002-1156;BID : 6065;

The Nessus client defaults to writing an ASCII-style report with a relatively straight-
forward documentation of the vulnerabilities and hosts discovered. Other report for-
mats, including HTML, a one-line style, and even XML, are also available.

Reports can also be converted on the fly as needed using the Nessus client. For exam-
ple, to convert the output.nsr file from our example to an HTML file, the following
command would be used:

nessus —i output.nsr —o output.html

In the example above, the output.html file could be served by any Web server, or
loaded into any Web browser.

Using the X Windows GUI

The Nessus client, if compiled with the GTK toolkit, also provides a GUI for scan con-
figuration and analysis of the discovered vulnerabilities. The GUI allows the Nessus
user to select which Nessus daemon will be used for testing, which vulnerabilities will
be used during the test, and how the Nessus daemon will perform the vulnerability
scanning process. Many of these options are discussed in the next section.

The Nessus GUI can also be used to evaluate the results of a vulnerability scan. Infor-
mation discovered during a vulnerability scan can be sorted by network addresses,
DNS domain names, IP addresses, open ports, and discovered vulnerability types and
severities. The GUI can also be used to save and convert Nessus reports in a variety of
formats.

December 2003 ;login: NESSUS

SECURITY

45

46

Tweaking Nessus: The Nessusrc File

Nessus’s performance, accuracy, and intrusiveness can all be controlled from the nes-
susrc file. When the Nessus GUI client runs, it creates the nessusrc file with the options
selected by the Nessus user. If no options are specified by the Nessus client, the Nessus
daemon will choose a variety of its own default values.

To build customer nessusrc files, an easy technique is to first run a basic scan with the
Nessus GUI client, and then to use the generated nessusrc file as a template that can be
modified. The default nessusrc file will be located in the user’s home directory as a
hidden file named .nessusrc. For example, a root user would find their nessusrc file in
/root/.nessusrc.

The nessusrc file has several sections. These are SERVER_PREFS, SCANNER_SET,
PLUGINS_PREFS, and PLUGIN_SET. The SERVER_PREFS controls a variety of set-
tings that relate to how the Nessus daemon performs scanning. The SCANNER_SET
and PLUGIN_SET sections identify which NASL scripts are enabled and disabled. The
PLUGIN_PREFS section provides information, such as a desired SNMP community
string, which may be used by one or more NASL scripts.

Several keywords in the SERVER_PREFS section are useful in configuring a Nessus
scan. Here is an example SERVER_PREFS section from a nessusrc file:

begin(SERVER_PREFS)

port_range = 1-1024

optimize_test = yes

safe_checks = yes

max_hosts = 30

max_checks = 10

cgi_path = /cgi-bin:/scripts
report_killed_plugins = yes
language = english

per_user_base = /usr/local/var/nessus/users
checks_read_timeout = 15
delay_between_tests = 1
non_simult_ports = 139
plugins_timeout = 320
auto_enable_dependencies = yes
use_mac_addr = no
save_knowledge_base = no
kb_restore = no
only_test_hosts_whose_kb_we_dont_have = no
only_test_hosts_whose_kb_we_have = no
kb_dont_replay_scanners = no
kb_dont_replay_info_gathering = no
kb_dont_replay_attacks = no
kb_dont_replay_denials = no
kb_max_age = 864000
plugin_upload = no
plugin_upload_suffixes = .nasl
save_session = no
save_empty_sessions = no
host_expansion = ip
reverse_lookup = no
detached_scan = no

Vol. 28, No. 6 jlogin:

continuous_scan = no
unscanned_closed = no
diff_scan = no
log_whole_attack = no
slice_network_addresses = no
end(SERVER_PREFS)

To limit or increase Nessus’s activity (and required resources), the keywords
max_checks and max_hosts can be modified. Increasing max_checks will allow the
Nessus daemon to launch more processes per tested system, and increasing the
max_hosts variable will increase the total number of systems a Nessus daemon will
check at once. On large servers with extra memory, bandwidth, and CPU resources, a
Nessus scan may run much faster with higher values than the defaults.

There is no exact formula for tuning a Nessus scan for optimized performance. How-
ever, during a scan, if CPU utilization is low, increasing these numbers by 50% may
decrease the amount of time to complete a scan. Also, if the desired scan is not a full
scan, but just a quick check for a few NASL scripts, increasing the max_hosts value
may decrease the overall scan time.

The optimize_test keyword invokes logic at the Nessus daemon such that it will only
attempt to launch a vulnerability check if a dependency has already been discovered.
For example, with this option enabled, a “writeable anonymous FTP directory” check
will not get invoked unless the “anonymous FTP access” check has returned positive.
Similarly, the auto_enable_dependencies keyword can be used to enable a plugin that
is required during testing. In the above example, if a Nessus user attempted to do a
“writeable anonymous FTP directory” sweep of a network but forgot to enable the
“anonymous FTP access” check, the scan would not return meaningful results. This
keyword allows Nessus users to perform quick checks without having to memorize the
potentially intricate dependencies some Nessus NASL plug-ins have.

The safe_checks keyword allows the Nessus daemon to select code within some NASL
scripts that is less intrusive but possibly more prone to false positives. For example, a
particular NASL script to look for a buffer overflow could attempt to actually flood an
application with potential exploit data, or with safe_checks enabled it might read the
banner information and make a decision about the vulnerability based on that.

If the particular scan includes a port scan, the ports to be probed are indicated with
the port_range keyword. Ports can be listed individually or in ranges separated by
commas. For example, 22,25,80,443,31330-31430 would scan the default ports for
SSH, SMTP, HTTP, HTTPS, and all ports between and including 31330 and 31430.

In addition, the unscanned_closed option causes the Nessus daemon to treat ports
that were not scanned as if they were closed. This is advantageous for doing “point”
scans. For example, when using a Nessus scan to find SMTP servers on port 25, NASL
scripts that perform checks on ports other than 25 would automatically not be
invoked.

The cgi_path keyword can be used to optimize certain NASL scripts that attempt to
find vulnerabilities on Web servers with CGI-BIN paths in non-obvious places. This
variable can be modified if the Nessus user has knowledge about how a particular Web
server has configured its CGI-BIN location.

The last keyword in the SERVER_PREFS section is the slice_network_addresses com-
mand. When enabled, the order in which IP addresses are tested is randomized. In an

December 2003 ;login: NESSUS

SECURITY

47

48

environment which is not reactive to a Nessus scan, this has no effect on results of the
scan. However, some dual-homed servers may experience several full scans at the same
time and suffer some sort of negative impact. Consider a router, switch, or even a data-
base server which is multi-homed on more than one network. If such a system were hit
on each interface at the same time, it might experience slower network response time,
slower server response times, or possibly even some sort of denial of service.

The PLUGIN_PREFS section specifies a wide variety of options for the enabled Nessus
plug-ins. Some of these can be used to increase the accuracy and number of vulnera-
bilities discovered on any network. For example, Nessus can also be preconfigured
with additional information, such as an SNMP community string and Windows net-
work “auditing” account information. This information can be used by the Nessus
daemon to actually log on to the tested hosts and check specific settings.

In the case of SNMP, several dozen Nessus checks make direct queries to the SNMP
information for security information. To specify an SNMP community string to be
used during testing, the SNMP port scan[entry]:Community name : = entry would be
coded with the desired string. It is important to realize that there still may be other
NASL scripts which do SNMP checks that do not take advantage of this setting, but
that there are one or more checks that do. In the specific case of SNMP, there is a spe-
cific NASL plugin that attempts to brute-force several common SNMP community
names. However, there are several dozen other NASL SNMP checks that use any dis-
covered SNMP community names, and any preconfigured in the nessusrc file.

For Windows auditing, if a Primary Domain Controller is being used, then a global
account which has read-only registry rights to each server in the domain can be used
by Nessus to actually log in to an evaluated system. This account’s username, pass-
word, and domain are placed in the nessusrc Login configurations options, specifically,
within the PLUGIN_PREFS section. These entries are shown below:

Login configurations[entry]:SMB account : =
Login configurations[password]:SMB password : =
Login configurations[entry]:SMB domain (optional) : =

When Nessus sees that a target host is a potential Windows host, it will attempt to log
in to the system and make registry calls to determine the configuration and whether
any vulnerabilities exist.

(For more information, see “Utilizing Domain Credentials to Enhance Nessus Scans,”
by Ty Gast of the Security Assurance Group, located at http://www.nessus.org/doc/nes-
sus_domain_whitepaper.pdf).

To determine whether a host is alive, the following settings can be configured for Nes-
sus:

Ping the remote hostlentryl:TCP ping destination port(s) : = built-in
Ping the remote host[checkbox]:Do a TCP ping = yes
Ping the remote host[checkbox]:Do an ICMP ping = no

If either a TCP ping or an ICMP ping check is enabled, then one of those checks has to
return positive, or else the tested IP address will be assumed not to be active. This is
important when testing systems that are protected by firewalls.

From outside a firewall, or with the presence of host-based firewalls, this may be the
only way to accurately test a host’s vulnerabilities. Consider a host serving a SQL data-

Vol. 28, No. 6 jlogin:

base on a high port that also has a firewall in front of it which prevents any access to
the server except via SQL. Any attempt to ping it with an ICMP packet, make a TCP
connection on any port other than the SQL port, or send any UDP packet to it would
not be successful. However, if SQL were running on the default SQL port, the first
NASL plugin that connected to it would succeed and the vulnerabilities would be
tested.

When scanning a large network, choosing either ICMP or TCP host enumeration is
recommended. Otherwise, each NASL plugin script must time out on its own. This
makes for a much longer, but also much more accurate, Nessus scan. For a TCP ping,
Nessus will attempt to connect to several common ports in the 1-1024 range. If
desired, a customer port list can be placed in the TCP ping destination port(s) configu-
ration option.

There are several hundred more settings for the PLUGIN_PREFS section. Readers
interested in crafting custom settings for other variables are encouraged to experiment
with the Nessus GUI client and observe the changes made in the produced nessusrc
files. Readers are also encouraged to consult the Nessus mailing list archive highlighted
at the end of this article.

The last two sections in the nessusrc file are PLUGIN_SET and SCANNER_SET. Both of
these sections list which NASL plug-ins are enabled and disabled. The SCANNER_SET
section is used to identify plug-ins that perform some sort of port scanning. These are
executed before the regular vulnerability-checking plug-ins. Historically, Nessus has
been able to invoke a wide variety of port scanning and host enumeration tools, such
as NMAP (http://www.nmap.org) and SNMPWALK. Currently, Nessus 2.0 does not
require any external port scanning tools. When listing a plugin for testing, the ID will
be printed followed by a simple “yes” if it is to be considered for testing, or a “no” if it
is to be excluded. Here is an example excerpt from a nessusrc file:

10909 = no
10330 = no
11268 = no
11480 = yes
10351 = yes
10010 = yes
10536 = yes
10440 = yes
11210 = yes
11641 = yes
11554 = yes

Nessus Vulnerability Checks and NASL

There are almost 2000 unique Nessus NASL scripts available. These scripts are each
labeled with a unique Nessus ID, contain a brief description of the relevant security
audit or vulnerability, and also have links to CVE (http://cve.mitre.org) and Symantec’s
BugTraq (http://www.securityfocus.com). Each NASL script is grouped into a family
that focuses on specific services, operating systems, and “problem areas” such as peer-
to-peer (P2P) file sharing.

Many of the vulnerability checks performed by NASL are unique tools unto them-
selves. For example, the traceroute tool includes logic to perform multiple traceroute
checks to many hosts without colliding. There are checks that identify wireless access

December 2003 ;login: NESSUS

There are almost 2000 unique
Nessus NASL scripts

available.

SECURITY

49

50

points by their TCP/IP operating-system fingerprint, individual Web interface, and
SNMP or FTP banner information.

Nessus includes plug-ins that can perform extremely complex audits of Web services.
For example, the “torture” CGI NASL script actually reads in the values of the Web
forms automatically found during a Nessus scan, and commonly queries these forms
with typical CGI-BIN exploit techniques. Similar checks are performed by commercial
Web-application testing tools.

Deploying Permanent Nessus Daemons

When deploying Nessus, many organizations take advantage of placing a server per-
manently within an infrastructure that is dedicated to scanning. These servers are
often located within server farms, behind firewalls, and within DMZs. Sometimes they
are also deployed permanently outside of a network to perform an external audit.

The advantage to deploying dedicated servers is that they are always on and ready to
perform a scan from the perfect location. Anyone who has performed a network secu-
rity audit and has had to drag a laptop around a network to get to the right spot to
perform a scan knows what a hassle it can be. By pre-placing a Nessus within a net-
work, the time it takes to perform a scan is just the time it takes to perform a scan.
There is no more need to walk to the building that has the firewall in it, fly to the
remote location, or find the proper network cable or switch port to plug into.

The systems that run the Nessus daemons should be secured so that no remote ser-
vices are running except those that are required to securely communicate with the
device. For example, a common “hardened” Nessus daemon server would include the
actual “nessusd” process, which normally listens on port 1241, and the Secure Shell
daemon, which listens on port 22. It is also common for users to use a system firewall
to limit connections to the Nessus daemon from the authorized network users and to
limit access to port 22 from only “trusted” IP addresses within the network.

When a Nessus daemon is deployed, very little vulnerability information will be pres-
ent on the device. Most scan data passes through the Nessus daemon and is not stored
there.

Minimizing Scanning Impact

Scanning with any network vulnerability scanner, including Nessus, can have a nega-
tive impact on the target network. This impact can come from an overall slowdown or
degradation in network performance, or a denial-of-service event on one or more
devices.

When Nessus 1.0 was originally available, its standard tests included a list of DoS tests
that were enabled by default. Often, a Nessus user in the late "90s would end up finding
out very quickly if their network systems were vulnerable to the “ping of death” DoS
attacks and several others. With Nessus 2.0, great care has been taken to limit the num-
ber of potentially damaging DoS checks that Nessus can perform. DoS checks are no
longer enabled by default.

When Nessus performs its checks, the traffic that it generates may have a negative
impact on a switch or firewall. Not only does the scan send packets across a network,
but often, one packet in a port scan will be considered a new session by a switch or
firewall. For example, some appliance firewalls that keep track of unique network ses-
sions will quickly lose track of their current valid sessions when faced with a large port

Vol. 28, No. 6 jlogin:

scan. If a firewall can only keep track of 65,000 unique network sessions, a port scan of
one host can quickly fill this buffer up, pushing out valid sessions. Similarly, poorly
designed firmware in routers, switches, and some firewalls doesn’t handle the large
numbers of network sessions generated during a vulnerability scan. The flaws in the
handling can be very subtle.

For example, the author used to work for a certain routing vendor, and one of our
products would reboot when scanned with a certain commercial vulnerability scanner.
Duplicating the same scan with Nessus or NMAP did not cause the reboot, and only
doing a low-level packet trace resulted in identifying the exact sequence of events
which brought the network device down.

To avoid stressing the network infrastructure, Nessus daemons should be placed as
close as possible to their desired targets. Any deployment that minimizes the flow of
host identification, port scans, and vulnerability checks across the core routers and
switches should be considered. Also, when doing a vulnerability scan for the first few
times on a large enterprise network, attempt to correlate the scan with the CPU load,
packet rates, and any other statistics that can be obtained from network engineering.
These statistics may indicate faults in the network before actual faults are caused, if
any.

Finally, when a specific host is identified, conducting vulnerability scans on the host
may cause some of its applications or the entire operating system to crash. Even with
careful writing and testing of NASL scripts, and with careful laboratory testing, there is
no way to guarantee that an NASL script will have no impact on every possible system
and application. All vulnerability scanners have this problem. Even if there were a way
to perform regression testing on all known operating systems and applications, there
are still thousands of custom applications that the Nessus project does not have access
to test.

When testing a production network, a lab test on a certain group of NASL scripts can
be used as a benchmark to predict the impact of running the NASL scripts on the
entire network. If a network has many similar hosts, such as a large network of Red
Hat Apache servers, doing some quick tests in a lab before blasting the entire network
can give a sense of the impact that will result. However, in networks with extremely
diverse families of servers, it is impossible to predict the impact of a scan without actu-
ally doing the scan itself.

Unlike other vulnerability scanners, Nessus does attempt to alert the user if it may
have crashed a server during testing. It does this by looking for changes in the available
ports of a tested server. If during a port scan, it sees that ports 80, 443, and 6000 are
open, it will alert the user that the server (or service) may have crashed if one of the
ports goes away.

Readers are advised that a poorly run network may crash for many reasons, including
failing to survive a vulnerability scan. They should not be dissuaded from performing
active scans, but should realize that doing any network activity can impact the net-
work. Most vulnerability scans simply exercise systems that have not been used in a
long while, or “operational” systems that were not fully tested.

The Future of Nessus
The Nessus project is currently funded by Tenable Network Security (http://www.
tenablesecurity.com), which is a commercial network security product company.

December 2003 ;login: NESSUS

SECURITY

51

52

Although the Nessus project continues to be open sourced, Tenable has introduced
several commercial products that greatly enhance Nessus for large enterprises.

Long-term plans for Nessus include a preliminary design of Nessus 3.0, which will
continue to make Nessus one of the top vulnerability scanners available to the network
security community. In the short term, the Nessus Web site recently added the ability
for users to submit information privately and anonymously about which of their
NASL scripts have produced false positives for them. This helps Tenable and the Nes-
sus project quickly identify when a NASL script needs to be modified. Nessus 2.0 was
released early in 2003, and ports to the OS X operating system have been completed.

There is a wide variety of information about Nessus available at http://www.nessus.org,
as well as a searchable mailing list located at http://msgs.securepoint.com/nessus/.

Vol. 28, No. 6 jlogin:

