
20 Vol. 28, No. 5 ;login:

In this column we’re going to continue our examination

of the C# programming language, and look at two par-

ticular features of C# classes.

We’ll start by considering the use of properties, which are kind
of a hybrid between data fields and methods. We’ll then go on
and look at static class members.

Properties
Imagine that you’re developing a C# class, and that class will
have a data field that represents a calendar year. The field is set
by the constructor and validated to ensure that the year is 1800
or later. You also want the ability to change the year after the
fact, in existing objects of the class.

Here’s some C# code that illustrates this approach:

using System;

public class Prop1 {
private int year;

public Prop1(int y) {
SetYear(y);

}

public int GetYear() {
return year;

}

private const int MINYEAR = 1800;

public void SetYear(int y) {
if (y < MINYEAR)

throw new ArgumentException("year < " + 
MINYEAR);

year = y;
}

}

public class TestProp1 {
public static void Main() {

Prop1 p = new Prop1(1956);
Console.WriteLine("year #1 = " + p.GetYear());

//p.year = 1977;
p.SetYear(1977);
Console.WriteLine("year #2 = " + p.GetYear());

}
}

The year field is private, meaning that it cannot be set directly
from outside of the class (see the commented line in Main). If
the field is made public, then there’s no way to validate a new
value that is set. The field is instead changed via the SetYear
method, and the proposed new value is checked in this method.

This approach is very common and works pretty well, but it’s a
little tedious to use, with every private field requiring a pair of
get/set access methods.

C# offers another approach to solving this problem, using what
are called properties. A property looks like a data field in an
object, but access is controlled via internal get/set methods. The
property can be made public and accessed like a field, but there
is a layer of control that allows the class designer to interpose
specific processing when the property is accessed.

Let’s look at an example:

using System;

public class Prop2 {
private int year;

private const int MINYEAR = 1800;

public int Year {
get {

return year;
}
set {

if (value < MINYEAR)
throw new ArgumentException("year < " + 

MINYEAR);
year = value;

}
}

public Prop2(int y) {
Year = y;

}
}

public class TestProp2 {
public static void Main() {

Prop2 p = new Prop2(1956);
Console.WriteLine("year #1 = " + p.Year);

using C# properties 
and static members

by Glen
McCluskey

Glen McCluskey is a
consultant with 20
years of experience
and has focused on
programming lan-
guages since 1988.
He specializes in Java
and C++ perfor-
mance, testing, and
technical documen-
tation areas.

glenm@glenmccl.com



21October 2003 ;login:

●
  

 
PR

O
G

RA
M

M
IN

Gp.Year = -1977;
Console.WriteLine("year #2 = " + p.Year);

}
}

There’s still a private year field in this code, but also a public
property “Year.” The property can be thought of as a “virtual
field.” It’s treated like a data field when you’re programming
with the class, but there are hooks such that the class can con-
trol what happens when the property’s value is retrieved or set.

In the example above, when the property value is retrieved, the
private year field’s value is returned. When the property is set,
the proposed new value, represented by the keyword value, is
first checked to ensure that it’s at least 1800. Then the private
field is set.

Properties enable simple field access from a programmer’s per-
spective while, at the same time, supporting data hiding so that
access to private data can be controlled.

Global Variables and Static Members
C# requires that all data fields be part of a class. This restriction
leads to an obvious question: How do you implement global
variables, variables that can be accessed from anywhere in your
application? Using such variables is not always a good idea, but
we’re going to assume that you really do want them for some
purpose.

To answer this question, we need to consider what is meant by
the concept of static class members. Normally, you define a class
and then create instances or objects of the class. For example, a
Point class that represents X,Y points will have various
instances, such as one that represents the point 25,35. The X,Y
values in the instance are called instance members.

A static member can be thought of as belonging to the class
itself, and not to its instances. For example, a static data field is
shared across all instances of a class. There may be one or a mil-
lion instances of the class in a running application, but there
will still be only one copy of the static data for the class.

Static members can be used to implement the equivalent of
global variables. Here’s an example:

// file #1

public class Globals {
private Globals() {}

public static int glob1 = 100;
public static int glob2 = 200;

}

// file #2

using System;

public class TestGlobals {
public static void Main() {

//Globals g = new Globals();

Globals.glob1 = 500;
Globals.glob2 = 600;

Console.WriteLine("glob1 = " + Globals.glob1);
Console.WriteLine("glob2 = " + Globals.glob2);

}
}

Globals is a class with two public static data members. They can
be referenced by qualifying the member names with “Globals.”
Globals also has a private constructor, which cannot be called
from outside the class. Defining a private constructor means
that no instances of the class can be created. In other words, the
class is used simply as a packaging vehicle for static data mem-
bers.

This same approach can be used for packaging static methods,
such as methods that represent self-contained mathematical
functions and that have no meaning as conventional methods
that operate on class instances. Let’s look at an example:

using System;

public class CircleFuncs {
private CircleFuncs() {}

public static double GetCircumference(double r) {
return 2.0 * Math.PI * r;

}

public static double GetArea(double r) {
return Math.PI * r * r;

}
}

public class TestCircleFuncs {
public static void Main() {

double radius = 10.0;

Console.WriteLine("circumference = " +
CircleFuncs.GetCircumference(radius));

Console.WriteLine("area = " +
CircleFuncs.GetArea(radius));

}
}

CircleFuncs is a class that groups together some methods used
to calculate properties of a circle, such as its circumference and
area.

Note that the Main method, the entry point to a C# application,
is static. It’s part of a class – in the example above, the class Test-
CircleFuncs – but it doesn’t operate on instances of TestCircle-
Funcs.

USING C# PROPERTIES AND STATIC MEMBERS ●  



Vol. 28, No. 5 ;login:22

Constants
Constants are closely related to static members. If you’re doing
C# programming, how do you define groups of constants for
use in your program? Let’s look at a couple of examples that
illustrate some of the techniques that are available:

using System;

enum Color {RED = 1, GREEN = 2, BLUE = 3}

public class Const {
private Const() {}

public const string RED = "red";
public const string GREEN = "green";
public const string BLUE = "blue";

}

public class TestConst {
public static void Main() {

Console.WriteLine("Color.GREEN = " +
Color.GREEN);

Console.WriteLine("Color.GREEN as int value = " +
(int)Color.GREEN);

Console.WriteLine("Const.GREEN = " +
Const.GREEN);

}
}

In this first example, we use an enumerated type, very similar to
what C and C++ offer. This approach works as you would
expect, but is suitable only for integral types.

The Const class shows how to define a group of string con-
stants. A private constructor is once again used, so that no
instances of the Const class can be created. The fields are
marked as Const, which means that they’re static and cannot be
changed after initialization.

When you run this program, the output is:

Color.GREEN = GREEN
Color.GREEN as int value = 2
Const.GREEN = green

Here’s another slightly more complicated example:

using System;

public class Primes {
public const uint NUMPRIMES = 10;
public static readonly uint[] PRIMES;

private Primes() {}

private static bool IsPrime(uint p) {
if (p <= 2)

return p == 2;
if (p % 2 == 0)

return false;

uint last = (uint)Math.Sqrt(p);
for (uint i = 3; i <= last; i += 2) {

if (p % i == 0)
return false;

}
return true;

}

static Primes() {
PRIMES = new uint[NUMPRIMES];
uint currvalue = 1;
for (uint i = 0; i < NUMPRIMES; i++) {

while (!IsPrime(currvalue))
currvalue++;

PRIMES[i] = currvalue++;
}

}
}

public class TestPrimes {
public static void Main() {

Console.Write("primes = ");
for (uint i = 0; i < Primes.NUMPRIMES; i++)

Console.Write(Primes.PRIMES[i] + " ");
Console.WriteLine();

}
}

In this example, we want to compute a table of prime numbers.
We want the table to be constant and thus not mutable after it’s
initialized, but at the same time, we’d like to compute the values
in the table at runtime, rather than actually listing them out (2,
3, 5, 7, 11, ...) in the source code.

There are a couple of techniques that we use to implement this
approach. We mark the PRIMES array as static and read-only.
The read-only qualifier means that the array can be modified in
the constructor, but not afterwards.

We also use a static constructor, which is called when the static
data members for the Primes class are initialized. The class has
both an instance constructor, which is private and used to disal-
low creation of class instances, and a static constructor, used to
initialize the PRIMES field.

The output of this program is:

primes = 2 3 5 7 11 13 17 19 23 29 

In future columns we’ll start looking at some broader issues
with classes, such as programming with interfaces and abstract
classes.


