
23October 2003 ;login:

the tclsh spot

THE TCLSH SPOT ●

●

PR

O
G

RA
M

M
IN

G

Client Server Sockets
Previous Tclsh Spot articles described techniques for

generating IP packets to simulate an attack on a fire-

wall, while the last Tclsh Spot article described using the

Expect extension to monitor a remote system’s log files.

This article will start to explore techniques for coordi-

nating the attack-and-monitor activities for a firewall

exerciser.

Several software architecture options exist for a system like this.
The two obvious ones are a single application with attacking
and monitoring subsections and a set of cooperating applica-
tions where each application provides a subset of the function-
ality.

A single application is conceptually simpler, since there’s no
need for interprocess communications. On the other hand,
dealing with multiple sections that can require attention at
undefined intervals is nearly as complex as interprocess com-
munication. The real problem with a single application archi-
tecture in this case is that it limits the system to a single
hardware platform. The validation application may need to run
attacks and monitors from multiple sets of hardware.

Given that there will be multiple independent processes, the
next question is whether they should be peers or operate in a
master-slave relationship. If all the processes were identical, it
would make sense to run a peer relationship. For a system
where each child task has a different purpose, a peer relation-
ship would mean that each child would need to know how to
communicate with every different type of application. With a
master-slave architecture, only the master needs to know how to
talk to many types of applications, and the individual applica-

tions only need to know how to talk to the master. This allows
the slave tasks to be simpler applications.

The last choice is whether to control the slave applications using
command line arguments, pipes, or sockets. Again, the need to
run on multiple sets of hardware drives the design to a socket-
based client-server architecture.

Using the Tcl socket command to coordinate multiple tasks is
fairly simple. The Tcl TCP socket implementation is possibly
the easiest-to-use socket package available, and the callback
mechanism used to service clients makes it easy for a server to
interact with several active clients simultaneously.

Tcl uses a channel abstraction for I/O. A channel is a handle
that references a source or destination for a stream of bytes. A
Tcl channel is similar to the FILE pointer in C, abstracted a bit
higher to include pipes and sockets.

We open either a client or server socket with Tcl’s socket com-
mand. A client-side socket is slightly simpler, so we’ll look at
that first.

Syntax: socket ?options? host port
socket Open a client socket connection.

?options? Options to specify the behavior of the socket.

-myaddr addr Defines the address (as a name or
number) of the client side of the
socket. This can be used to specify
which of several Ethernet interfaces
to use, and is not necessary if the
client machine has only one network
interface.

-myport port Defines the port number for the
server side to open. If this is not sup-
plied, then a port is assigned at ran-
dom from the available ports.

-async Causes the socket command to
return immediately, whether the
connection has been completed or
not.

host The host to open a connection to. May be a name or
a numeric IP address.

port The number of the port to open a connection to on
the host machine.

The socket command will return a channel which can be used
with the puts and gets commands to send and receive data
from the channel.

As a quick test of a Tcl client, we might write the code shown
below, expecting to see the beginnings of a Sendmail conversa-
tion.

by Clif Flynt

Clif Flynt is president
of Noumena Corp.,
which offers training
and consulting ser-
vices for Tcl/Tk and
Internet applications.
He is the author of
Tcl/Tk for Real Pro-
grammers and the
TclTutor instruction
package. He has
been programming
computers since
1970 and a Tcl advo-
cate since 1994.

clif@cflynt.com

Vol. 28, No. 5 ;login:24

set smtpSocket [socket 127.0.0.1 25]
set input [gets $smtpSocket]
puts "READ 1: $input"
puts $smtpSocket "helo foo@bar.baz"
set input [gets $smtpSocket]
puts "READ 2: $input"

Unfortunately, this won’t quite work. This script generates a
single line of output and then hangs:

READ 1: 220 vlad.cflynt.com ESMTP Sendmail
8.11.6/8.11.6; Tue, 5 Aug 2003 20:48:36 -0400

By default, Tcl channels use buffered I/O. The example above
just hangs forever with the string “helo foo@bar.baz” sitting in
the client socket’s output buffer, while the Sendmail server waits
for input.

Tcl provides two solutions to this dilemma: the flush com-
mand, which will flush a buffer, or the fconfigure command,
which allows an application to modify the behavior of a chan-
nel.

The simplest way to solve the problem is to follow each puts
with a flush command. This works fine on small programs but
gets cumbersome on larger projects.

Syntax: flush channelId

flush Flush the output buffer of a buffered channel.

channelId The channel to flush.

For example:

set smtpSocket [socket 127.0.0.1 25]
set input [gets $smtpSocket]
puts "READ 1: $input"

puts $smtpSocket "helo foo@bar.baz"
flush $smtpSocket

set input [gets $smtpSocket]
puts "READ 2: $input"

This generates the expected output of a simple conversation:

READ 1: 220 vlad.cflynt.com ESMTP Sendmail
8.11.6/8.11.6; Tue, 5 Aug 2003 20:48:36 -0400

READ 2: 501 5.0.0 Invalid domain name

The better way to solve the buffered I/O problem is to figure out
what style of buffering best suits your application and configure
the channel to use that buffering. For a challenge/response type
interaction, this is probably line buffering; a character-based
interactive application (like Telnet) would use no buffering,
while an application moving lots of data (like an HTTP dae-
mon) would use fully buffered I/O.

Syntax: fconfigure channelId ?name? ?value?

fconfigure Configure the behavior of a channel.

channelId The channel to modify.
name The name of a configuration field which includes:

-blocking boolean If set true (the default
mode), a Tcl program will
block on a gets, or read
until data is available. If set
false, gets, read, puts, flush,
and close commands will
not block.

-buffering newValue The newValue argument
may be set to:
full: The channel will use

buffered I/O.

line: The buffer will be
flushed whenever a
full line is received.

none: The channel will
flush whenever char-
acters are received.

By using fconfigure to set the buffering to line mode, we don’t
need the flush after each puts command.

set smtpSocket [socket 127.0.0.1 25]
fconfigure $smtpSocket -buffering line

set input [gets $smtpSocket]
puts "READ 1: $input"

puts $smtpSocket "helo example.com"

set input [gets $smtpSocket]
puts "READ 2: $input"

This script generates output resembling this:

READ 1: 220 vlad.cflynt.com ESMTP Sendmail
8.11.6/8.11.6; Tue, 5 Aug 2003 20:51:34 -0400

READ 2: 250 vlad.cflynt.com Hello localhost [127.0.0.1],
pleased to meet you

A server-side socket is a little different. Rather than opening a
connection to another system, a server waits until a client
requests a connection to a particular port. When a client
requests a connection, a new port is assigned for the conversa-
tion, and a callback script defined in the socket -server com-
mand is evaluated.

Syntax: socket -server procedureName ?options? port
socket
-server Open a socket to watch for connections from clients.

25October 2003 ;login:

●

PR

O
G

RA
M

M
IN

GprocedureName A procedure to evaluate when a connection
attempt occurs. This procedure will be called
with three arguments:
■ The channel to use for communication

with the client.
■ The IP address of the client.
■ The port number used by the client.

?options? Options to specify the behavior of the socket.

-myaddr addr Defines the address (as a name
or number) to be watched for
connections. This is not neces-
sary if the client machine has
only one network interface.

port The number of the port to watch for connec-
tions.

The code to establish a server-side socket looks like this:

socket -server openConnection $port

The script that gets evaluated when a socket is opened (in this
case, the openConnection procedure) does whatever setup is
required. This might include client validation, opening connec-
tions to databases, configuring the socket for asynchronous
read/write access, etc.

The script has three arguments appended to it before being
evaluated: the handle for the new channel, the IP address of the
client, and the port assigned to the client’s socket.

A simple server to report the current time and close the connec-
tion looks like this:

#!/usr/local/bin/wish
socket -server openConnection 12345

proc openConnection {channel ip port} {
puts $channel [clock format [clock seconds]]
close $channel

}

This will open a connection, but doesn’t do anything useful. A
more useful server would interact with the client. The server
could use the blocking gets command to wait for input, but
while this paradigm works with single-client applications like
Sendmail, it won’t work with multiple clients, any of which
might require service at any time.

Tcl supports both the linear-program flow used with a block-
until-data-is-ready model, and an event-driven flow, which can
be used with a multiple simultaneous session model.

The fileevent command defines a script to evaluate when data
becomes available. Using fileevent guarantees that data will be

available to read when the script is called, thus the application
never blocks.

Syntax: fileevent channel direction ?script?

fileevent Defines a script to evaluate when a channel
readable or writable event occurs.

channel The channel identifier returned by open or
socket.

direction Defines whether the script should be evalu-
ated when data becomes available (readable)
or when the channel can accept data
(writable).

?script? If provided, this is the script to evaluate when
the channel event occurs. If this argument is
not present, Tcl returns any previously
defined script for this file event.

Setting up a file event is commonly done on the server side
within the openConnection script, and on a client side, imme-
diately after opening the socket.

Server side sample openConnection with fileevent

proc openConnection {channel ip port} {
fileevent $channel readable [list processLine $channel]
fconfigure $channel -buffering line

}

Client sample open socket with fileevent

set Client(sock) [socket 127.0.0.1 12345]
fileevent $Client(sock) readable "processLine $Client(sock)"

The last “Tclsh Spot” article described using expect to auto-
mate examining a log file. We can use the challResp procedure
from that example to build a client that will automate verifying
an FTP server.

The challResp procedure provides a framework for
challenge/response interactions:

###
proc challResp {pattern response info}—
Hold a single interchange challenge/response conversation.
Arguments
pattern: The pattern to wait for as a challenge.
response: The response to this pattern.
info: Identifying information about this interac-
tion for use with exception reporting.

Results

proc challResp {pattern response info} {
global spawn_id
expect {

$pattern {exp_send "$response\n"}

THE TCLSH SPOT ●

Vol. 28, No. 5 ;login:26

timeout {error "Timeout at $info" "Timeout at $info"}
eof {error "Eof at $info" "Eof at $info"}

}
return "OK"

}

We could automate this FTP login conversation:

$< ftp 192.168.90.222

Connected to 192.168.90.222.
220 vmware2.cflynt.com FTP server (Version

wu-2.6.2-5) ready.
Name (192.168.90.222:clif): anonymous

331 Guest login ok, send your complete e-mail address
as password.

Password:
230 Guest login ok, access restrictions apply.

with this code:

spawn ftp 192.168.99.99
challResp "Name" anonymous "Name prompt"
challResp "word:" foo@example.com "Password prompt"
challResp "Guest login ok" " " "FTP application prompt"

If there is no FTP server running on 192.168.99.99, a timeout
error will be generated with the string Name prompt, and if
anonymous logins are not supported, the error will include the
string FTP application prompt. If anonymous logins are sup-
ported, no error will be generated.

This can be expanded and generalized into a procedure that
keeps a list of arguments for challResp in a list, and iterates
over them until the arguments are used up, or an error is
thrown:

###
proc runTest {}—
Run an FTP login test
Arguments
NONE
Results
Returns a list of result (Success/Fail) and optional
failure message.

proc runTest {} {

global Client spawn_id errorInfo
set errorInfo ""

spawn ftp $Client(IP)

set conversations {
"Name" "$Client(User)" "Name prompt"
"word:" "$Client(Passwd)" "Password prompt"
"Guest login ok" {} "FTP application prompt"

}

foreach {challenge response msg} $conversations {

set fail [catch {challResp $challenge [subst
$response] $msg} result]

if {$fail} {break;}
}

array set lookup {0 "Success" 1 "Fail"}

puts $Client(output) [list RESULT: $lookup($fail)
$result]

}

By using the associative array Client to hold the IP address,
username, and password, it is easy to run multiple tests with
code like this:

array set Client {IP 192.168.99.99 User badIP Passwd
badPasswd}

runTest
array set Client {IP 192.168.90.222 User goodUser

Passwd goodPasswd}
runTest

This set of code would create a stand-alone application with a
hardcoded set of tests. The script would iterate through the tests
and exit.

We can convert this into a client-server application by adding a
procedure to process the data that’s read from the server and a
few lines to open and configure the socket. The problem with
this is that the script would open the socket, send an initial
“Hello,” and then reach the end of the script and exit.

The vwait command is the solution to this problem. The vwait
command causes a script to wait until a variable changes value.
The interpreter pauses at the vwait command and enters the
event loop, processing events until the variable is assigned a new
value. After this the interpreter continues evaluating the com-
mands in the script.

Syntax: vwait varName

varName The variable name to watch. The script fol-
lowing the vwait command will be evaluated
after the variable’s value is modified.

The simplest way to process the data from the server is to have
the server always send Tcl commands, which can be evaluated
in the client using Tcl’s eval command.

The eval command concatenates a set of strings into a single
string, and passes it to the command evaluation section of the
interpreter, just as lines in a script are evaluated.

Syntax: eval string1 ?string2...?

string* Strings that will compose a command.

proc processLine {channel} {
global Client

27October 2003 ;login:

●

PR

O
G

RA
M

M
IN

Gset len [gets $channel line]

if {[eof $channel]} {
close $channel
return

}
eval $line

}

set Client(output) [socket 127.0.0.1 23456]
fileevent $Client(output) readable "processLine

$Client(output)"

fconfigure $Client(output) -buffering line

Let the server know we’re open for business.

puts $Client(output) ready

set Client(done) 0
vwait Client(done)

The server will send the client data like this:

array set Client {IP 192.168.99.99 User badIP Passwd
badPasswd}

runTest

When the client receives data, the fileevent command causes
the processLine procedure to be evaluated, which reads a line
from the socket and evaluates it.

Notice the eof test after the gets. This will catch the spurious
read event generated by most TCP stacks when the other end of
a socket closes.

The server end of this pair includes a list of tests to run and
three procedures to coordinate the tests:

openConnection
Accepts new client connections.

processLine
Reads data from the client. Displays results and calls
runTest to start the next test in the client.

runTest
Sends the commands to the client.

The list of tests can simply be an identifier and a set of array
indices and values to be sent to the client:

set Server(tests) {
{{bad address } {IP 192.168.90.223 User badIP

Passwd badPasswd}}
{{bad username} {IP 192.168.90.222 User badUser

Passwd badPasswd}}
{{good username} {IP 192.168.90.222 User goodUser

Passwd goodPasswd}}
{{anonymous/badPasswd} {IP 192.168.90.222 User

anonymous Passwd badPasswd}}

{{anonymous/goodpwd} {IP 192.168.90.222 User
anonymous Passwd foo@bar.com}}

}

The openConnection procedure registers the fileevent script to
evaluate whenever the client sends data, configures the channel
to be line buffered, and initializes a counter to step through the
tests for this client.

Note how this procedure uses an associative array index with
two fields to distinguish the test counts for connections from
different clients. Using multiple fields in an array index pro-
vides the same functionality in Tcl as multiple dimensioned
arrays provide in C and FORTRAN.

proc openConnection {channel ip port} {
global Server
fileevent $channel readable [list processLine $channel]
fconfigure $channel -buffering line

initialize the test counter
set Server($channel.testNum) 0

}

The processLine procedure starts the same as the client’s
processLine procedure by reading a line of data and checking
for an EOF condition.

The server does a rudimentary parse, looking to see if a line
starts with the phrase “RESULT”. If the line starts with
“RESULT”, it’s displayed. Once data is read, the runTest proce-
dure is invoked.

proc processLine {channel} {
global Server

set len [gets $channel line]

if {[eof $channel]} {
close $channel
unset Server($channel.testNum)
return

}
if {[string first RESULT $line] == 0} {

puts "$Server(descript): $line"
}
runTest $channel

}

Finally, the runTest procedure checks to see whether there are
valid tests to be run. If there are, it sends the appropriate Tcl
commands to the client and updates the counter.

proc runTest {channel} {
global Server

if {$Server($channel.testNum) = [llength
$Server(tests)]} {

THE TCLSH SPOT ●

Vol. 28, No. 5 ;login:28

puts $channel {set Client(done) 1}
} else {

foreach {Server(descript) params} \
[lindex $Server(tests) $Server($channel.testNum)] {}

puts $channel "array set Client [list $params]"
puts $channel "runTest"
incr Server($channel.testNum)

}
}

This pair of procedures implements a simple test framework
that can be run with different sets of data to characterize an
FTP server. It’s not sufficient to handle characterizing a firewall,
but it’s getting closer.

Sending scripts to the client to evaluate is a technique used by
agent-style applications. This technique supports a great deal of
customization at runtime. Tcl’s eval command creates safe
sandboxed interpreters, which makes it an excellent choice for
exploring agent style applications.

The next “Tclsh Spot” article will look at building a server-
agent architecture to perform more tests. As usual, the complete
code that was described in this article is available from
http://www.noucorp.com.

