practical per

by Adam Turoff

Adam is a consultant
who specializes in
using Perl to manage
big data. He is a
long-time Perl Mon-

er, a technical editor
or The Perl Review,
and a frequent pre-
senter at Perl confer-
ences.

ziggy@panix.com

Using Obiject Factories

In my last column, I demonstrated how to clean up a CGI
form-building program by refactoring it and using a hierarchy
of modules. Each module inherited from a common applica-
tion-specific Field module and implemented specialized behav-
iors to produce a specific kind of CGI form field. This time, I
revisit the same problem and examine a different solution —
object factories and factory methods.

One of the best features of Perl is the principle of TMTOWTDI:
“There’s More Than One Way to Do It” Even if you have only a
passing familiarity with Perl, you can use it to automate a
tedious task or write a small program to get your job done. You
can approach Perl as a shell programmer, or as a C or Java pro-
grammer, and still get your job done.

However, Perl is a rich language unlike any other. While you are
free to use idioms from shell, C, or Java to accomplish your task,
using Perl idioms can help you do it faster and with less effort.
My last column took a Java-flavored approach to cleaning up a
CGI program. In this column, I'll look at a more Perl-flavored
approach that’s easier to write, maintain, and extend.

Many Ways to Do It

Consider the problem from the last column: a CGI program
that needs to create an HTML form. The simple and straight-
forward approach is to use the CGl.pm HTML-building func-
tions to build a Web page one piece at a time:

#!/usr/bin/perl -Tw

use strict;
use CGI gw(:standard);

print header('text/html');
print start_html("Test Page");

print start_form();
print popup_menul...);

October 2003 ;login: PRACTICAL PERL

print submit(), reset();
print end_form();

print end_html();

While that approach is easy to write and easy to understand, it
is also awkward and cumbersome. It is a simple translation of
HTML syntax into Perl statements for building a static Web
page. Modifying and debugging this program will be more diffi-
cult than necessary — programmers will need to keep a mental
model of the HTML page in mind while modifying code that
uses Perl syntax. Adding dynamic features to selectively display
some components will turn this simple program into some-
thing complex very quickly.

The above fragment deals with two primary tasks: building the
Web page, and building the form components. In my experi-
ence, the first part of this program is static and unchanging,
while the second part is more dynamic. Therefore, the program
can be simplified by separating the static HTML-building parts
from the more dynamic form-building parts.

One way to simplify the form-building part of this program is
to describe an HTML form with a list of hashes. Each hash in
this list represents a single form field. Building an HTML form
involves processing these field descriptions and converting them
into HTML form fields as necessary. The full Web page is then
created by combining the static HTML elements with these
dynamically generated form fields. A program written this way
might look something like this:

#1/usr/bin/perl -Tw
use strict;
use CGI qw(:standard);

my @fields = (
{
-name => "name”,
-label=> "Name",
-size=>50,
-maxlength=>50,
-procedure=>\&CGl::textfield,
|3
more fields here
);

my @rows;
foreach my $row (@fields) {
my $sub = $row->{"-procedure’};
push (@rows, Tr(td($row->{-label}),
td($sub->(%$row))));

PROGRAMMING

29

30

print start_form(),
table(@rows),
submit(), reset(),
end_form();

While this approach is a step forward, it does have problems.
The format for the field descriptions found in the @fields array
are undocumented. They are values that will be passed to a
CGl.pm function like CGl::textfield, but that knowledge is
hidden dozens or hundreds of lines away in the body of the
foreach loop.

This approach also leads to a lot of duplicated information. The
-name and -label components contain similar values. Instead,
one could easily be derived from the other, reducing an oppor-
tunity for bugs to creep in.

Ideally, these field objects should be simple to create and use.
One way to do that is to create a group of Field modules to ease
the process of defining fields to build an HTML form. Here is
an example of what that might look like, taken from the last
column:

#!/usr/bin/perl -Tw

use strict;
use Field; ## pull in all the Field::* packages
use CGI gw(:standard);

my @fields = (
new Field::Text('Name'),
more fields here

);

.rﬁ.y @rows;
foreach my $field (@fields) {

push (@rows, $field->display_row());
}

print start_form(),
table(@rows),
submit(), reset(),
end_form();

In this example, the interface for building a Web page is much
cleaner. Creating the @fields list is done by creating a series of
objects that are defined by the Field module. Each object con-
structor uses sensible defaults and requires a minimal amount
of information. Later on, the dynamic HTML form field gener-
ation is accomplished by calling the display_row method on
each field object in turn.

The Problem with Inheritance

The interface provided by the Field::* modules certainly sim-
plifies the job of creating a dynamic Web form. It works by
using a core Field class and subclasses like Field::Text to con-
struct specific field types:

package Field;
use strict;

use CGI qw(:standard);

sub init_field {
my $self = shift;
my %params = @_;

Assign the key/value pairs for this object

while(my ($key, $value) = each %params) {
$self->{$key} = $value;

}

Create the field name from the text label

my $name = "\L$self->{-label}";

$name =~ s/ /_/g;

$self->{-name} = $name;

return $self;

}

sub display_row {
my $self = shift;
my $sub = $self->{-procedure};

return Tr(td($self->{-label}), td($sub->(% $self)));
}

package Field::Text;
use base 'Field’;
use CGI;

sub new {
my $class = shift;
my $label = shift;
Create an object
my $self = bless {}, $class;
Finish initialization

$self->init_field(-label => $label,
-size => b0,
-maxlength => 50,
-procedure =>\&CGl::textfield);

}

Field types that display multiple values share similar behaviors.
The Field::Group module helps to define field types like radio
groups and checkbox groups:

package Field::Group;
use base 'Field";

Vol. 28, No. 5 jlogin:

sub init_group {

my $self = shift;

my $procedure = shift;

my $label = shift;

my @values =@_;

$self->init(-label => $label,
-procedure => $procedure,
-values => \@values);

}

package Field::RadioGroup;
use base 'Field::Group’;
use CGI;

sub new {
my $class = shift;

my $self = bless {}, $class;
$self->init_group(\&CGl::radio_group, @_);
}

package Field::CheckboxGroup;
use base 'Field::Group';
use CGl;
sub new {
my $class = shift;

my $self = bless {}, $class;
$self->init_group(\&CGI::checkbox_group, @_);
}

Although this module hierarchy does aid in creating dynamic
HTML forms, it has a Java-flavored design that leads to overly
complex Perl code. In order to define three types of fields, five
classes are required in a hierarchy that is three levels deep.

Extending this library isn’t difficult, but it is cumbersome. Each
HTML form field type requires a new class definition. Each
class definition contains a package declaration, a use base dec-
laration, and a constructor method. While none of these
requirements are particularly odious, they obscure the intent:
identifying the differences between textboxes, radio groups,
checkbox groups, and other HTML form fields.

Using Object Factories

Looking at the code for the Field modules, there are two pri-
mary tasks that need to be solved: creating and displaying field
objects. The process of creating fields is handled by a series of
constructor functions, and the process of displaying fields is
handled by the display_row() method in the Field class.

Each type of field object is created by a different method.
Textbox objects are created by the constructor of the Field::Text
class, radio group objects are created by the constructor of the
Field::RadioGroup class, and so on. But there’s very little differ-

October 2003 ;login: PRACTICAL PERL

ence between these objects. In fact, the only real differences
between these objects are in the data they store.

Because there are no behavioral differences between these
objects, there’s no necessity to create multiple class definitions.
In fact, all of these objects could be created through different
methods in a single class. After all, there’s nothing special about
object constructors in Perl — they’re just class methods that hap-
pen to create objects.

Refactoring the code to take advantage of this observation, we
can replace the entire class hierarchy with two classes: one to
display fields and one to create field objects. The new Field class
is very easy to write; it contains all of the behaviors shared
across field objects. Currently, this is only the display_row()
method, and a basic constructor:

package Field;
use CGI gw(:standard);

sub new {
return bless {}, __PACKAGE__;
}

sub display_row {

my $self = shift;

my $sub = $self->{-procedure};

return Tr(td($self->{-label}), td($sub->(% $self)));
}

The rest of the magic is in an object factory class, a class that
exists to create other objects. This class, FieldFactory, contains
the methods for creating and customizing new Field objects,
init_field() and init_group(). The init_field() method handles the
bulk of the initialization and customization of a new Field
object, while the init_group() method handles tasks common to
initializing group fields.

Here’s the start of the FieldFactory class. These two methods are
almost exactly the same as the previous versions. The main dif-
ference is that the init_field() method customizes a new object,
$obj, not the current object, $self (now a FieldFactory object):

package FieldFactory;
use CGI;

sub new {
return bless {}, __PACKAGE__;
}

sub init_field {
my $self = shift;
my %params = @_;
my $obj = new Field;

Assign the key/value pairs for this object
while(my ($key, $value) = each %params) {

PROGRAMMING

31

$obj->{Skey} = $value;
}

Create the field name from the text label
my $name = "\L$self->{-label}";

$name =~ s/ /_/g;

$obj->{-name} = $name,;

return $obj;

sub init_group {

my $self = shift;

my $procedure = shift;

my $label = shift;

my @values =@_;

$self->init_field(
-label => $label,
-procedure => $procedure,
-values => \@values);

}

The remainder of the FieldFactory class is composed of factory
methods which call these two init methods to create Field
objects. Here is the factory method that creates textbox fields. It
is almost identical to the old Field::Text constructor:

sub textbox {
my $self = shift;
my $label = shift;

return $self->init_field(

-label => $label,

-size => b0,

-maxlength => 50,

-procedure => \&CGl::textfield);

}

The real benefit comes from adding new factory methods. Here
are a few more which create radio groups, checkbox groups, and
pop-up menus. Note that all we need here is the code. The
extraneous package declarations and other magic incantations
are no longer necessary:

sub radio_group{
my $self = shift;
$self->init_field_group(\&CGl::radio_group, @_);
}

sub checkbox_group{
my $self = shift;
$self->init_field_group(\&CGlI::checkbox_group, @_);
}

sub popup_menu {
my $self = shift;
$self->init_field_group(\&CGl::popup_menu, @_);

With these changes to the Field module, the CGI program needs
some minor changes. First, we have to create a FieldFactory
object. Next, the constructor calls to create form fields need to
be replaced with method calls on the factory object. The
updated code looks something like this:

#!/usr/bin/perl -wT

use strict;
use Field;
use FieldFactory;

my $factory = new FieldFactory;

my @fields = (
$factory->textbox('Name'),

);
my @rows;
foreach my $field (@fields) {

push (@rows, $field->display_row());
}

print start_form(),
table(@rows),
submit(), reset(),
end_form();

Conclusion

This program demonstrates there’s always more than one way
to do it. Simple and straightforward programs may be easy

to write initially, but they can lead to readability and maintain-
ability problems later on as they grow. Cleaning up with ad hoc
data structures can help some areas of a program and hurt
others.

Restructuring programs to use modules is a very big win, and
there’s more than one way to factor out common code into
modules. One common technique is to create a hierarchy of
classes to solve a problem. Another is to create an object factory
instead of a class hierarchy to describe differences between
objects. Each technique has its benefits and its uses. In this
example, using an object factory helped simplify the implemen-
tation of an application-specific module with very little impact
on the main of the program.

Vol. 28, No. 5 jlogin:

