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Overview
Over the years, production High Performance Computing (HPC) was syn-

onymous with scientific computing on “Big Iron” supercomputers. No

longer dominated by just physical scientists and their Grand Challenge

Equations, production HPC now embraces a variety of compute architec-

tures. Though framed in the broader context of non-traditional HPC, atten-

tion here focuses on parallel computing via the Message Passing Interface

(MPI). Problems cast as MPI applications are seen to have a parallel-com-

puting bias that reaches back into the numerical methods that have been

used and even to the originating science. Whereas MPI itself shows signifi-

cant promise in addressing current computing challenges, in practice some

serious shortcomings must be addressed in order for production HPC to be

realized.

Workload-management system software closes the gap between MPI applications and
their compute architectures, resulting in a solution for production HPC. A specific
example of production HPC for the Linux operating environment shows that such
solutions exist today. Moreover, the workload-management methodologies that apply
at the cluster level have a natural affinity for extension to the Grid. Overall, organiza-
tions are able to better empower the pursuit of science and engineering during MPI
application development, deployment, and use.

Five Steps to Scientific Insight
To motivate the applications and architectures discussion, consider a scientific-inquiry
example from the physical sciences.1 Once the problem under investigation has been
determined, the first task is to determine the relevant physics, chemistry, etc. (Figure 1,
Step 1). This consideration results in a mathematical description of the problem that
needs to be solved (Figure 1, Step 2). On the positive side, the mathematical descrip-
tion typically exists, i.e., there is rarely a need to invent the mathematical description.
In many cases, the required mathematical description can be formulated by combining
existing descriptions. Although mathematics is the oldest and most deeply explored
discipline, mathematical methods are often insufficient, except in idealized situations
subject to simplifying assumptions, to solve the resulting equations. In mathematical
terms, it is often difficult to near impossible to derive analytic solutions to many scien-
tific equations. To make matters worse, in some cases it is difficult to prove that such
solutions even exist. Such existence theorems serve as a cornerstone for the practice of
mathematics. Thus science exposes serious mathematical challenges – in stark contrast
to our childhood experiences with mathematics.

Given this challenging mathematical context, numerical methods are used to permit
progress on otherwise unsolvable scientific problems (Figure 1, Step 3). Typically, this
involves a discrete representation of the equation(s) in space and/or time, and per-
forming calculations that trace out an evolution in space and/or time.2 It’s important
to note that the underlying structure of the resulting set of equations influences the
types of numerical methods that can be applied.3

Thus, numerical experiments are acts of modeling or simulation subject to a set of
pre-specified constraints (Figure 1, Step 4). Problems in which time variations are key
need to be seeded with initial conditions, whereas those with variations in space are
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1. The analogous steps for informatics-heavy
sciences such as the life sciences will be left for
future consideration.

2. Symbolic algebraic manipulation (SAM) pro-
vides a notable analytic exception to this dis-
crete approach. Maple ([1]) serves as a
representative example of SAM technology. It is
not uncommon to use SAM in conjunction
with the discrete approach described here.

3. There is an extensive literature base on this
topic. Implementations of equations involving a
collection of methods are often organized into
libraries.



4. “Numerics” is used here as a shorthand
for numerical methods.

5. If the interest is computing, then commu-
nication is viewed as the “overhead’ required
to achieve the computation. Similarly, com-
putation might be regarded as the overhead
required to facilitate certain communica-
tions.

6. The mathematical convention of number-
ing quadrants counter-clockwise from the
upper-right-hand corner is used here.

7. Although high-density, rack-mounted sin-
gle/dual processor servers have been used in
compute farms, there is an intensifying
trend toward the use of higher density blade
servers in these configurations.

subject to boundary conditions; it is not uncommon for prob-
lems to specify both kinds of constraints. The numerical model
or simulation subject to various constraints can be regarded as
a scientific application. Thus the solution of a scientific prob-
lem results in numerical output that may or may not be repre-
sented graphically (Figure 1, Step 5). One of four primary types
(see “Applications and Architectures”, below), this application is
further regarded as scientific workload that needs to be man-
aged as the calculations are carried out. Because the practices of
science and engineering are actually undertaken as a process of
discovery, Figure 1 should be regarded as a simplifying
overview that does not depict the recursive nature of investiga-
tion.

It may appear that numerical methods are the cure-all for any
scientific problem that cannot be solved by mathematical
methods alone. Unfortunately, that is not the case. On their

own, many of the equations of classical physics and chemistry push even the most
powerful compute architectures to the limits of their capability. Irrespective of numer-
ical methods and/or compute capability, these Grand Challenge Equations afford solu-
tions based on simplifying assumptions, plus restrictions in space and/or time.
Because these particularly thorny equations are critical in science and engineering,
there is an ongoing demand to strive for progress. Examples of Grand Challenge prob-
lems are provided elsewhere ([2]).

Applications and Architectures
Science dictates mathematics and mathematics dictates numerics4 (Figure 1). Thus a
numerics bias exists in all applications of scientific origin. This predisposition moti-
vates four types of applications (Figure 2) revealed by exploring process granularity.
Granularity refers to the size of a computation that can be performed between com-
munication or synchronization points ([3]). Thus, any point on the vertical axis of
Figure 2 identifies a specific ratio of computation (increasing from bottom to top) to
communication (increasing from top to bottom).5 Task parallelism, increasing from
left-to-right on the horizontal axis, refers to the degree of parallelism present in the
application; “fine” through “coarse” are used as qualitative metrics, as shown.

Most scientific problems are implemented initially as serial applica-
tions (Figure 2, Quadrant II).6 These problems require that each step
of the scientific calculation be performed in sequence. Serial applica-
tions can be executed on compute architectures ranging from isolated
desktops, servers, or supercomputers to compute farms. Compute
farms are loosely coupled compute architectures in which system
software is used to virtualize compute servers7 into a single system
environment (SSE).

Various factors – time-to-results, overall efficiency, etc. – combine to
demand performance improvements beyond what can be achieved by
“legacy” serial applications alone. For those applications whose focus
is on data processing, it is natural to seek and exploit any parallelism
in the data itself. Such data parallel applications (Figure 2, Quadrant
I) are termed embarrassingly parallel since the resulting applications
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1. Determine relevant physics/chemistry/etc.

2. Represent the science mathematically

3. Represent the mathematics numerically

4. Model/simulate numerically

5. Produce numerical/visual results
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Figure 1. Five steps to scientific insight
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are able to exploit the inherent coarse granularity. The parallelism in data is leveraged
by (Figure 3):

� Subdividing input data into multiple segments;
� Processing each data segment independently via the same executable; and 
� Reassembling the individual results to produce the output data.

This data-driven approach accounts for one of four classes of
parametric processing (Figure 4). Although data-parallel appli-
cations are a solid match for isolated systems and compute
farms, there is an increasing trend to harvest compute cycles
from otherwise idle desktops. Regarded as opportunistic com-
pute resources, desktops “pull” processing tasks from coordi-
nating servers that they will execute as a background process –
especially in place of a traditional screensaver. Desktops as
compute elements gained initial popularity through the peer-
to-peer (P2P) movement and more recently in the context of grid computing. Ray-
tracing applications provide a classic demonstration of this processing architecture.
Despite the added challenge of managing data, successful implementations of embar-
rassingly parallel applications exist in many industries – genome sequencing in the life
sciences, Monte Carlo simulations in high energy physics, reservoir modeling in petro-
leum exploration, risk analysis in financial services, and so on. This approach is so
appealing and powerful that it’s often perceived to be of general utility. Unfortunately,
this simply isn’t the case – and this is especially true for the Grand Challenge Equa-
tions identified previously.

If it exists at all, parallelism in the Grand Challenge Equations can be exploited at the
source-code level – e.g., by taking advantage of loop constructs in which each calcula-
tion is independent of others in the same loop. Parallelism in data is absent or of
minor consequence. This code-level parallelism lends itself to compute parallel (Figure
2, Quadrant IV) applications. Compute parallel applications are further segmented on
the basis of memory access – i.e., shared versus distributed memory. With minimal
language extensions, and explicit code-level directives, OpenMP ([5]) and, more
recently, Unified Parallel C (UPC, [6]) offer up parallel computing with shared-mem-
ory programming semantics. Symmetric multiprocessing (SMP) systems allow for
shared-memory programming semantics via threads8 through uniform (UMA) and
nonuniform (NUMA) memory access architectures.

Parallel Virtual Machine (PVM, [7]) has given way to the Message Passing Interface
(MPI, [8]) as the standard for parallel computing with distributed-memory program-
ming semantics. Likened to the “assembly language” for parallel programming ([9]),
MPI requires a significant investment at the source-code level.9 In contrast to the use
of threads in the shared-memory context, distributed processes are employed in the
MPI case to achieve parallelism. MPI applications are typically implemented for
tightly coupled compute clusters (see HPC Application Development Environment,
below, for additional details). Although other factors (e.g., architecture access) need to
be considered, numerics do influence the choice of parallel computing via shared ver-
sus distributed memory.10 Both shared and distributed-memory parallel computing
methodologies have been applied to scientific and engineering problems in a variety of
industries – e.g., computational and combinatorial chemistry in the life sciences, com-
putational fluid dynamics, crash simulations and structural analyses in industrial
manufacturing, Grand Challenge problems in government organizations and educa-
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8. In addition to the fork-and-exec creation of
child processes, a parent process may also
involve threads. Distinguishable by the operat-
ing system, threads can share or have their own
memory allocations with respect to their parent
process.

9. Recent advances allow serial applications to
be automatically enabled for MPI ([10]). By
identifying code regions suitable for paralleliza-
tion (e.g., repetitive calculations) via a templat-
ing mechanism, code-level modifications are
applied. This approach is being applied exten-
sively in financial services, where numerical
models change frequently.

10. Hybrid OpenMP-MPI applications allow
scientists and engineers to simultaneously use
threads and distributed processes when using a
combination of SMP and clustered architec-
tures.
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Figure 3. Data-driven parametric processing
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tional institutions, and scenario modeling in financial services. MPI compute parallel
applications, traditional HPC, will be the focus of our attention here.

Because MPI provides such a rich framework for computing in general, there are
examples of MPI applications that communicate extensively while carrying out mini-
mal processing (Figure 2, Quadrant III) – e.g., remote-to-direct-memory applications
(RDMA), or certain classes of search algorithms. In addition, service applications
whose focus is networking itself or Web services ([11]) themselves would also fall into
this area. As before, MPI applications would require tightly coupled architectures;
whereas networking applications can be applied in a variety of contexts, loosely cou-
pled architectures can be used in the instantiation of Web services.

HPC Application Development Environment
Together with the “commoditization” of low-processor-count, high-density servers
and the emergence of low-latency, high-bandwidth interconnect technologies, MPI has
played a key role in the widespread adoption of tightly coupled compute clusters for
distributed memory-parallel computing ([12]):

MPI is available everywhere and widely used in environments ranging from small
workstation networks to the very largest computers in the world, with thousands of
processors. Every parallel computer vendor offers an MPI implementation, and
multiple implementations are freely available as well, running on a wide variety of
architectures. Applications large and small have been ported to MPI or written as
MPI programs from the beginning, and MPI is taught in parallel programming
courses worldwide.
Applied through source-code-level modifications, MPI-specific directives are refer-
enced against an MPI library at application link time. MPI libraries are architecture
specific and may come from a variety of sources – e.g., a system vendor, an inter-
connect vendor, or via an open source contribution. In each case, the relevant
library implements the MPI specification11 to some degree of compliance. This
MPI library, in combination with the tools and utilities that support developers,
collectively forms the application development environment for a particular plat-
form (Figure 4).

The situation described above might lead one to conclude that all of the requisites are
present to smoothly enable MPI adoption. In practice, however, MPI has the following
challenges:

� Resynchronization and reconnection were not even factored in at the specification
level ([9]). There are no MPI implementations that account for this shortcoming.
This is in striking contrast to PVM, whose implementation allows for this.

� Fault tolerance was not factored in, even at the specification level ([9]); again,
there are no MPI implementations that account for this shortcoming. This can
mean, for example, that an application can lose some of its processes, run to com-
pletion, and yield results of dubious validity.

� Hosts and numbers of processors need to be specified as static quantities, irre-
spective of actual usage conditions.

� Single point of control is absent. Although some recent MPI implementations
offer a process daemon to launch MPI applications, there is little in the way of real
application control.

� Multiple versions of MPI may exist on the same architecture. Applications need to
carefully identify the relevant MPI libraries. The situation is more complex for
MPI applications that span more than one execution architecture.

11. Most MPI libraries fully implement version
1.x of the MPI specification, while many
libraries are today supporting some subset of
the version 2.x specification.
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The upshot is clear: MPI places the responsibility for these shortcomings on the
application developer and user. Because MPI applications are a challenge to con-
trol and audit, a better production HPC solution is required.

Production HPC Reinvented
There is a gap between the potential for distributed-memory parallel computing
via MPI and what is actually achievable in practice. The use of system software
allows this gap to be closed and the promise of MPI to be fully realized. In the
process, the notion of production HPC is redefined. To start, consider a modified
version of Figure 4 in which the   newly added workload-management system
software is shown in black on white (Figure 5).

Figure 5 introduces the following three components to the MPI application devel-
opment environment:

� Core workload management services. This system software component allows
a heterogeneous collection of compute servers, each running its own instance
of an operating system, to be virtualized into a compute cluster.12 Sensory
agents are used to maintain static and dynamic information in real time across
the entire compute cluster. Primitives for process creation and process control
across a network are also provided.

� Parallel application management. Challenges specific to the management of
MPI parallel applications include the need to:

� Maintain the communication connection map;
� Monitor and forward control signals;
� Receive requests to add, delete, start, and connect tasks;
� Monitor resource usage while the user application is running;
� Enforce task-level resource limits;
� Collect resource usage information and exit status upon termination;

and
� Handle standard I/O.

� Parallel scheduling services. Workload management solutions typically
employ a policy center to manage all resources – e.g., jobs, hosts, intercon-
nects, users, and queues. Through the use of a scheduler, and subject to prede-
fined policies, resource demands are mapped against the supply of resources
in order to facilitate specific activities. Scheduling policies of particular rele-
vance in parallel computing include advance reservation, backfill, preemption,
and processor and/or memory reservation.

The combined effects of these three layers of a workload-management infrastructure
allow the shortcomings of MPI to be directly addressed:

� Absence of resynchronization and reconnection: Although the workload-manage-
ment infrastructure (Figure 5) cannot enable resynchronization or reconnection,
by introducing control across all of the processes involved in an MPI application,
there is greatly improved visibility into synchronization and/or connection issues.

� Absence of fault tolerance: At the very least, the introduction of a workload-man-
agement infrastructure provides visibility into exceptional situations by trapping
and propagating signals that may be issued while workload is executing. These
signals can be acted upon to automatically re-queue workload that has thrown an
undesirable exception. Even better, when integrated with the checkpoint/restart
infrastructure of a workload manager, interrupted workload can continue to exe-
cute from the last successful checkpoint, often without user intervention.

PRODUCTION HPC REINVENTED �  

12. This layered-services approach has been
contrasted with Beowulf clustering (via a dis-
tributed process space) elsewhere ([13]).
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� Absence of load balancing: The need to explicitly identify hosts and numbers of
processors can be regarded as an absence of load balancing – i.e., the specification
of resources that ignores current resource-usage conditions. Because workload-
management infrastructures maintain dynamic load state across the entire com-
pute infrastructure in real time, this shortcoming is completely eliminated.

� Absence of single point of control: A parallel application manager provides a sin-
gle point of control. This ensures that all the distributed processes that collectively
make up the MPI application are managed and accounted for. Again a key short-
coming becomes a core competence via workload-management system software.

� Multiple versions of MPI: Through configuration information, MPI applications
are able to specify the relevant MPI library. A very flexible architecture also allows
the workload-management system software to work in concert with the existing
parallel application development and runtime environment.

Together with the existing parallel application development and runtime environment,
workload-management system software allows the inherent shortcomings of MPI to
be effectively eliminated. The cumulative effect is to practically reinvent HPC via MPI.
This threefold reinvention is captured in Figure 6.

The process starts with MPI applications that are developed in-house or acquired from
commercial providers.

On job submission, these applications are accompanied by a description of their run-
time resource requirements – e.g., a processor-count range,13 data-management direc-
tives (e.g., a file transfer), plus other environmental requirements.14 The scheduling
agent takes into account the pre-specified resource requirements, the unique charac-
teristics of the compute architectures that it has available, and the policies that reflect
organizational objectives. Because the scheduler creates a runtime environment for the
workload, its task is one of dynamic provisioning. On dispatch, the scheduler has opti-
mally matched the workload to an appropriate runtime architecture subject to estab-
lished policies. The application executes in a fully managed environment. A
comprehensive audit trail ensures that all activities are accounted for. In this way, there
is a closed loop for production HPC, one that enhances the developer and user experi-
ence rather than encumbering it. A specific solution example is provided in the follow-
ing section.

Production HPC for Linux
It has been suggested that production HPC can be reinvented through the use of an
integrated development and runtime environment in which workload-management
system software plays a key role. A complete example is considered here to further
illustrate this reinvention. Consider the integrated production HPC solution stack
shown in Figure 7. Although this example is based on the Linux operating environ-
ment, similar stacks for other operating environments can be crafted.

At the base of the production HPC solution stack for Linux are low-processor-count
servers,15 each running its own instance of the GNU/Linux operating system. Ether-
net-based network interface cards (NICs) allow for standard TCP/IP-based services
between these systems. Because TCP/IP over Ethernet necessitates assumptions regard-
ing shared access and the occurrence of collisions, the result is a communications pro-
tocol that is latency heavy and therefore inefficient for message-passing in support of
parallel computing. Hence, each system implements Myricon’s GM message-passing

13. Experience dictates that every parallel appli-
cation show acceptable performance character-
istics over a range of processors. A typical
criterion is that the performance remain close
to linear as the number of processors increases.
This is referred to as “linear speedup.” Effective
workload-management systems allow this
processor count to be specified as a range at
workload submission time. This serves to auto-
mate the load balancing situation and to
enhance overall effectiveness of the scheduling
services.

14. The need to bind processes to processors
serves as one example of an execution environ-
ment requirement. In such cases, the workload-
management infrastructure works in tandem
with the operating system, interconnect man-
ager, etc., to address the requirement.

15. Historically, Alpha-based processors were
used because of their excellent floating-point-
performance characteristics. With the advent of
first-generation Itanium processor family
CPUs, it is expected that 64-bit Intel Architec-
ture (IA-64) will eventually dominate in this
space. In the interim, fourth-generation IA-32
Pentium processor family CPUs hold the
price/performance niche.

Applications

Architecture

Provisioning

MPI Application

MPICH-GM Library

Platform HPC for Linux

Myrinet Interconnect

Linux

Figure 6. Production HPC reinvented

Figure 7. Production HPC for Linux



21August 2003 ;login:

protocol across low-latency, high-bandwidth, multi-port Myricom Myrinet switches
([14]) used solely to support parallel computing via MPI and the GM driver. By iden-
tifying each available Myrinet port as a resource to the core workload-management
services provided by Platform HPC for Linux ([15]), the provisioning component of
this infrastructure is aware of the static and dynamic attributes of the architecture it
can apply parallel scheduling policies against. Platform HPC for Linux also provides
the control and audit primitives that allow parallel applications to be completely man-
aged. Users’ MPI applications need to be compiled and linked against the application
development environment provided by Myricom. This ensures that the appropriate
GM-protocol modifications to the widely adopted open source MPICH implementa-
tion of MPI are used. Through configuration information, the workload-management
system software based on Platform HPC for Linux is made aware of the enhanced MPI
runtime environment.

Portability was identified as a design goal for MPI. This objective has been carried
through in MPI implementations such as MPICH. Despite this fact, heterogeneous
parallel applications based on MPI must not only use the same implementation of
MPI (e.g., MPICH) but also the same protocol implementation (e.g., GM). In other
words, MPI is a multi-protocol API (Figure 8) in which each protocol implements its
own message formats, exchange sequences, and so on.

Because they can be regarded as a cluster of clusters, it follows that computational
grids might provide a suitable runtime environment for MPI applications. The fact
that grids are concerned with resource aggregation across geographic (and other)
domains further enhances the appeal. Fortunately, Platform HPC for Linux is consis-
tent with Platform MultiCluster – system software that allows independent clusters
each based on Platform LSF to be virtualized into an enterprise grid. This combination
introduces the possibility for exciting new modes of infrastructural provisioning
through various grid-centric scheduling policies – e.g., Grid Advance Reservation,
Grid Fairshare, and Grid Resource Leasing.

Of these grid-centric policies, Grid Resource Leasing (GRL) is par-
ticularly novel and powerful. GRL allows sites to make available
fractions of their resources for use by other sites participating in
their enterprise grid. These collective resources can be occupied by
MPI applications through requirement specifications. In this fash-
ion, users can co-schedule MPI applications to span more than one
geographic location. Even more impressive is the fact that this co-
scheduling is automatically enabled at runtime, that is, existing
MPI applications do not need to be re-linked with special libraries. By jointly leverag-
ing the parallel application management capability already present in Platform HPC
for Linux, in concert with this grid-level scheduling policy of Platform MultiCluster,
MPI application users take advantage of their entire enterprise grid in a transparent
and effective fashion. Platform MultiCluster and its grid-level scheduling policies are
considered in detail elsewhere ([17]).

Summary
Production High Performance Computing (HPC) incorporates a variety of applica-
tions and compute architectures. Widespread use of the Message Passing Interface
(MPI) is better enabled through the use of workload-management system software.
This software allows MPI applications and the compute architectures on which they
execute to be provisioned on demand. This critical link significantly reduces complex-
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ity for the scientist or engineer, thus reducing time to results and ensuring overall
organizational efficiency. A tightly coupled cluster based on the Linux operating envi-
ronment was shown to be a particularly attractive and viable compute architecture.
The incorporation of this environment into a compute grid was also shown to be a
natural progression. Overall, organizations are able to better empower the pursuit of
science and engineering during application development, deployment, and use.
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Overview
Over the years, production High Performance Computing (HPC) was syn-

onymous with scientific computing on “Big Iron” supercomputers. No

longer dominated by just physical scientists and their Grand Challenge

Equations, production HPC now embraces a variety of compute architec-

tures. Though framed in the broader context of non-traditional HPC, atten-

tion here focuses on parallel computing via the Message Passing Interface

(MPI). Problems cast as MPI applications are seen to have a parallel-com-

puting bias that reaches back into the numerical methods that have been

used and even to the originating science. Whereas MPI itself shows signifi-

cant promise in addressing current computing challenges, in practice some

serious shortcomings must be addressed in order for production HPC to be

realized.

Workload-management system software closes the gap between MPI applications and
their compute architectures, resulting in a solution for production HPC. A specific
example of production HPC for the Linux operating environment shows that such
solutions exist today. Moreover, the workload-management methodologies that apply
at the cluster level have a natural affinity for extension to the Grid. Overall, organiza-
tions are able to better empower the pursuit of science and engineering during MPI
application development, deployment, and use.

Five Steps to Scientific Insight
To motivate the applications and architectures discussion, consider a scientific-inquiry
example from the physical sciences.1 Once the problem under investigation has been
determined, the first task is to determine the relevant physics, chemistry, etc. (Figure 1,
Step 1). This consideration results in a mathematical description of the problem that
needs to be solved (Figure 1, Step 2). On the positive side, the mathematical descrip-
tion typically exists, i.e., there is rarely a need to invent the mathematical description.
In many cases, the required mathematical description can be formulated by combining
existing descriptions. Although mathematics is the oldest and most deeply explored
discipline, mathematical methods are often insufficient, except in idealized situations
subject to simplifying assumptions, to solve the resulting equations. In mathematical
terms, it is often difficult to near impossible to derive analytic solutions to many scien-
tific equations. To make matters worse, in some cases it is difficult to prove that such
solutions even exist. Such existence theorems serve as a cornerstone for the practice of
mathematics. Thus science exposes serious mathematical challenges – in stark contrast
to our childhood experiences with mathematics.

Given this challenging mathematical context, numerical methods are used to permit
progress on otherwise unsolvable scientific problems (Figure 1, Step 3). Typically, this
involves a discrete representation of the equation(s) in space and/or time, and per-
forming calculations that trace out an evolution in space and/or time.2 It’s important
to note that the underlying structure of the resulting set of equations influences the
types of numerical methods that can be applied.3

Thus, numerical experiments are acts of modeling or simulation subject to a set of
pre-specified constraints (Figure 1, Step 4). Problems in which time variations are key
need to be seeded with initial conditions, whereas those with variations in space are

production HPC 
reinvented
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1. The analogous steps for informatics-heavy
sciences such as the life sciences will be left for
future consideration.

2. Symbolic algebraic manipulation (SAM) pro-
vides a notable analytic exception to this dis-
crete approach. Maple ([1]) serves as a
representative example of SAM technology. It is
not uncommon to use SAM in conjunction
with the discrete approach described here.

3. There is an extensive literature base on this
topic. Implementations of equations involving a
collection of methods are often organized into
libraries.



4. “Numerics” is used here as a shorthand
for numerical methods.

5. If the interest is computing, then commu-
nication is viewed as the “overhead’ required
to achieve the computation. Similarly, com-
putation might be regarded as the overhead
required to facilitate certain communica-
tions.

6. The mathematical convention of number-
ing quadrants counter-clockwise from the
upper-right-hand corner is used here.

7. Although high-density, rack-mounted sin-
gle/dual processor servers have been used in
compute farms, there is an intensifying
trend toward the use of higher density blade
servers in these configurations.

subject to boundary conditions; it is not uncommon for prob-
lems to specify both kinds of constraints. The numerical model
or simulation subject to various constraints can be regarded as
a scientific application. Thus the solution of a scientific prob-
lem results in numerical output that may or may not be repre-
sented graphically (Figure 1, Step 5). One of four primary types
(see “Applications and Architectures”, below), this application is
further regarded as scientific workload that needs to be man-
aged as the calculations are carried out. Because the practices of
science and engineering are actually undertaken as a process of
discovery, Figure 1 should be regarded as a simplifying
overview that does not depict the recursive nature of investiga-
tion.

It may appear that numerical methods are the cure-all for any
scientific problem that cannot be solved by mathematical
methods alone. Unfortunately, that is not the case. On their

own, many of the equations of classical physics and chemistry push even the most
powerful compute architectures to the limits of their capability. Irrespective of numer-
ical methods and/or compute capability, these Grand Challenge Equations afford solu-
tions based on simplifying assumptions, plus restrictions in space and/or time.
Because these particularly thorny equations are critical in science and engineering,
there is an ongoing demand to strive for progress. Examples of Grand Challenge prob-
lems are provided elsewhere ([2]).

Applications and Architectures
Science dictates mathematics and mathematics dictates numerics4 (Figure 1). Thus a
numerics bias exists in all applications of scientific origin. This predisposition moti-
vates four types of applications (Figure 2) revealed by exploring process granularity.
Granularity refers to the size of a computation that can be performed between com-
munication or synchronization points ([3]). Thus, any point on the vertical axis of
Figure 2 identifies a specific ratio of computation (increasing from bottom to top) to
communication (increasing from top to bottom).5 Task parallelism, increasing from
left-to-right on the horizontal axis, refers to the degree of parallelism present in the
application; “fine” through “coarse” are used as qualitative metrics, as shown.

Most scientific problems are implemented initially as serial applica-
tions (Figure 2, Quadrant II).6 These problems require that each step
of the scientific calculation be performed in sequence. Serial applica-
tions can be executed on compute architectures ranging from isolated
desktops, servers, or supercomputers to compute farms. Compute
farms are loosely coupled compute architectures in which system
software is used to virtualize compute servers7 into a single system
environment (SSE).

Various factors – time-to-results, overall efficiency, etc. – combine to
demand performance improvements beyond what can be achieved by
“legacy” serial applications alone. For those applications whose focus
is on data processing, it is natural to seek and exploit any parallelism
in the data itself. Such data parallel applications (Figure 2, Quadrant
I) are termed embarrassingly parallel since the resulting applications
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1. Determine relevant physics/chemistry/etc.

2. Represent the science mathematically

3. Represent the mathematics numerically

4. Model/simulate numerically

5. Produce numerical/visual results

Initial
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Figure 1. Five steps to scientific insight
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Figure 2. Applications and architectures
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are able to exploit the inherent coarse granularity. The parallelism in data is leveraged
by (Figure 3):

� Subdividing input data into multiple segments;
� Processing each data segment independently via the same executable; and 
� Reassembling the individual results to produce the output data.

This data-driven approach accounts for one of four classes of
parametric processing (Figure 4). Although data-parallel appli-
cations are a solid match for isolated systems and compute
farms, there is an increasing trend to harvest compute cycles
from otherwise idle desktops. Regarded as opportunistic com-
pute resources, desktops “pull” processing tasks from coordi-
nating servers that they will execute as a background process –
especially in place of a traditional screensaver. Desktops as
compute elements gained initial popularity through the peer-
to-peer (P2P) movement and more recently in the context of grid computing. Ray-
tracing applications provide a classic demonstration of this processing architecture.
Despite the added challenge of managing data, successful implementations of embar-
rassingly parallel applications exist in many industries – genome sequencing in the life
sciences, Monte Carlo simulations in high energy physics, reservoir modeling in petro-
leum exploration, risk analysis in financial services, and so on. This approach is so
appealing and powerful that it’s often perceived to be of general utility. Unfortunately,
this simply isn’t the case – and this is especially true for the Grand Challenge Equa-
tions identified previously.

If it exists at all, parallelism in the Grand Challenge Equations can be exploited at the
source-code level – e.g., by taking advantage of loop constructs in which each calcula-
tion is independent of others in the same loop. Parallelism in data is absent or of
minor consequence. This code-level parallelism lends itself to compute parallel (Figure
2, Quadrant IV) applications. Compute parallel applications are further segmented on
the basis of memory access – i.e., shared versus distributed memory. With minimal
language extensions, and explicit code-level directives, OpenMP ([5]) and, more
recently, Unified Parallel C (UPC, [6]) offer up parallel computing with shared-mem-
ory programming semantics. Symmetric multiprocessing (SMP) systems allow for
shared-memory programming semantics via threads8 through uniform (UMA) and
nonuniform (NUMA) memory access architectures.

Parallel Virtual Machine (PVM, [7]) has given way to the Message Passing Interface
(MPI, [8]) as the standard for parallel computing with distributed-memory program-
ming semantics. Likened to the “assembly language” for parallel programming ([9]),
MPI requires a significant investment at the source-code level.9 In contrast to the use
of threads in the shared-memory context, distributed processes are employed in the
MPI case to achieve parallelism. MPI applications are typically implemented for
tightly coupled compute clusters (see HPC Application Development Environment,
below, for additional details). Although other factors (e.g., architecture access) need to
be considered, numerics do influence the choice of parallel computing via shared ver-
sus distributed memory.10 Both shared and distributed-memory parallel computing
methodologies have been applied to scientific and engineering problems in a variety of
industries – e.g., computational and combinatorial chemistry in the life sciences, com-
putational fluid dynamics, crash simulations and structural analyses in industrial
manufacturing, Grand Challenge problems in government organizations and educa-
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8. In addition to the fork-and-exec creation of
child processes, a parent process may also
involve threads. Distinguishable by the operat-
ing system, threads can share or have their own
memory allocations with respect to their parent
process.

9. Recent advances allow serial applications to
be automatically enabled for MPI ([10]). By
identifying code regions suitable for paralleliza-
tion (e.g., repetitive calculations) via a templat-
ing mechanism, code-level modifications are
applied. This approach is being applied exten-
sively in financial services, where numerical
models change frequently.

10. Hybrid OpenMP-MPI applications allow
scientists and engineers to simultaneously use
threads and distributed processes when using a
combination of SMP and clustered architec-
tures.
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Figure 3. Data-driven parametric processing
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tional institutions, and scenario modeling in financial services. MPI compute parallel
applications, traditional HPC, will be the focus of our attention here.

Because MPI provides such a rich framework for computing in general, there are
examples of MPI applications that communicate extensively while carrying out mini-
mal processing (Figure 2, Quadrant III) – e.g., remote-to-direct-memory applications
(RDMA), or certain classes of search algorithms. In addition, service applications
whose focus is networking itself or Web services ([11]) themselves would also fall into
this area. As before, MPI applications would require tightly coupled architectures;
whereas networking applications can be applied in a variety of contexts, loosely cou-
pled architectures can be used in the instantiation of Web services.

HPC Application Development Environment
Together with the “commoditization” of low-processor-count, high-density servers
and the emergence of low-latency, high-bandwidth interconnect technologies, MPI has
played a key role in the widespread adoption of tightly coupled compute clusters for
distributed memory-parallel computing ([12]):

MPI is available everywhere and widely used in environments ranging from small
workstation networks to the very largest computers in the world, with thousands of
processors. Every parallel computer vendor offers an MPI implementation, and
multiple implementations are freely available as well, running on a wide variety of
architectures. Applications large and small have been ported to MPI or written as
MPI programs from the beginning, and MPI is taught in parallel programming
courses worldwide.
Applied through source-code-level modifications, MPI-specific directives are refer-
enced against an MPI library at application link time. MPI libraries are architecture
specific and may come from a variety of sources – e.g., a system vendor, an inter-
connect vendor, or via an open source contribution. In each case, the relevant
library implements the MPI specification11 to some degree of compliance. This
MPI library, in combination with the tools and utilities that support developers,
collectively forms the application development environment for a particular plat-
form (Figure 4).

The situation described above might lead one to conclude that all of the requisites are
present to smoothly enable MPI adoption. In practice, however, MPI has the following
challenges:

� Resynchronization and reconnection were not even factored in at the specification
level ([9]). There are no MPI implementations that account for this shortcoming.
This is in striking contrast to PVM, whose implementation allows for this.

� Fault tolerance was not factored in, even at the specification level ([9]); again,
there are no MPI implementations that account for this shortcoming. This can
mean, for example, that an application can lose some of its processes, run to com-
pletion, and yield results of dubious validity.

� Hosts and numbers of processors need to be specified as static quantities, irre-
spective of actual usage conditions.

� Single point of control is absent. Although some recent MPI implementations
offer a process daemon to launch MPI applications, there is little in the way of real
application control.

� Multiple versions of MPI may exist on the same architecture. Applications need to
carefully identify the relevant MPI libraries. The situation is more complex for
MPI applications that span more than one execution architecture.

11. Most MPI libraries fully implement version
1.x of the MPI specification, while many
libraries are today supporting some subset of
the version 2.x specification.
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The upshot is clear: MPI places the responsibility for these shortcomings on the
application developer and user. Because MPI applications are a challenge to con-
trol and audit, a better production HPC solution is required.

Production HPC Reinvented
There is a gap between the potential for distributed-memory parallel computing
via MPI and what is actually achievable in practice. The use of system software
allows this gap to be closed and the promise of MPI to be fully realized. In the
process, the notion of production HPC is redefined. To start, consider a modified
version of Figure 4 in which the   newly added workload-management system
software is shown in black on white (Figure 5).

Figure 5 introduces the following three components to the MPI application devel-
opment environment:

� Core workload management services. This system software component allows
a heterogeneous collection of compute servers, each running its own instance
of an operating system, to be virtualized into a compute cluster.12 Sensory
agents are used to maintain static and dynamic information in real time across
the entire compute cluster. Primitives for process creation and process control
across a network are also provided.

� Parallel application management. Challenges specific to the management of
MPI parallel applications include the need to:

� Maintain the communication connection map;
� Monitor and forward control signals;
� Receive requests to add, delete, start, and connect tasks;
� Monitor resource usage while the user application is running;
� Enforce task-level resource limits;
� Collect resource usage information and exit status upon termination;

and
� Handle standard I/O.

� Parallel scheduling services. Workload management solutions typically
employ a policy center to manage all resources – e.g., jobs, hosts, intercon-
nects, users, and queues. Through the use of a scheduler, and subject to prede-
fined policies, resource demands are mapped against the supply of resources
in order to facilitate specific activities. Scheduling policies of particular rele-
vance in parallel computing include advance reservation, backfill, preemption,
and processor and/or memory reservation.

The combined effects of these three layers of a workload-management infrastructure
allow the shortcomings of MPI to be directly addressed:

� Absence of resynchronization and reconnection: Although the workload-manage-
ment infrastructure (Figure 5) cannot enable resynchronization or reconnection,
by introducing control across all of the processes involved in an MPI application,
there is greatly improved visibility into synchronization and/or connection issues.

� Absence of fault tolerance: At the very least, the introduction of a workload-man-
agement infrastructure provides visibility into exceptional situations by trapping
and propagating signals that may be issued while workload is executing. These
signals can be acted upon to automatically re-queue workload that has thrown an
undesirable exception. Even better, when integrated with the checkpoint/restart
infrastructure of a workload manager, interrupted workload can continue to exe-
cute from the last successful checkpoint, often without user intervention.
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12. This layered-services approach has been
contrasted with Beowulf clustering (via a dis-
tributed process space) elsewhere ([13]).
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� Absence of load balancing: The need to explicitly identify hosts and numbers of
processors can be regarded as an absence of load balancing – i.e., the specification
of resources that ignores current resource-usage conditions. Because workload-
management infrastructures maintain dynamic load state across the entire com-
pute infrastructure in real time, this shortcoming is completely eliminated.

� Absence of single point of control: A parallel application manager provides a sin-
gle point of control. This ensures that all the distributed processes that collectively
make up the MPI application are managed and accounted for. Again a key short-
coming becomes a core competence via workload-management system software.

� Multiple versions of MPI: Through configuration information, MPI applications
are able to specify the relevant MPI library. A very flexible architecture also allows
the workload-management system software to work in concert with the existing
parallel application development and runtime environment.

Together with the existing parallel application development and runtime environment,
workload-management system software allows the inherent shortcomings of MPI to
be effectively eliminated. The cumulative effect is to practically reinvent HPC via MPI.
This threefold reinvention is captured in Figure 6.

The process starts with MPI applications that are developed in-house or acquired from
commercial providers.

On job submission, these applications are accompanied by a description of their run-
time resource requirements – e.g., a processor-count range,13 data-management direc-
tives (e.g., a file transfer), plus other environmental requirements.14 The scheduling
agent takes into account the pre-specified resource requirements, the unique charac-
teristics of the compute architectures that it has available, and the policies that reflect
organizational objectives. Because the scheduler creates a runtime environment for the
workload, its task is one of dynamic provisioning. On dispatch, the scheduler has opti-
mally matched the workload to an appropriate runtime architecture subject to estab-
lished policies. The application executes in a fully managed environment. A
comprehensive audit trail ensures that all activities are accounted for. In this way, there
is a closed loop for production HPC, one that enhances the developer and user experi-
ence rather than encumbering it. A specific solution example is provided in the follow-
ing section.

Production HPC for Linux
It has been suggested that production HPC can be reinvented through the use of an
integrated development and runtime environment in which workload-management
system software plays a key role. A complete example is considered here to further
illustrate this reinvention. Consider the integrated production HPC solution stack
shown in Figure 7. Although this example is based on the Linux operating environ-
ment, similar stacks for other operating environments can be crafted.

At the base of the production HPC solution stack for Linux are low-processor-count
servers,15 each running its own instance of the GNU/Linux operating system. Ether-
net-based network interface cards (NICs) allow for standard TCP/IP-based services
between these systems. Because TCP/IP over Ethernet necessitates assumptions regard-
ing shared access and the occurrence of collisions, the result is a communications pro-
tocol that is latency heavy and therefore inefficient for message-passing in support of
parallel computing. Hence, each system implements Myricon’s GM message-passing

13. Experience dictates that every parallel appli-
cation show acceptable performance character-
istics over a range of processors. A typical
criterion is that the performance remain close
to linear as the number of processors increases.
This is referred to as “linear speedup.” Effective
workload-management systems allow this
processor count to be specified as a range at
workload submission time. This serves to auto-
mate the load balancing situation and to
enhance overall effectiveness of the scheduling
services.

14. The need to bind processes to processors
serves as one example of an execution environ-
ment requirement. In such cases, the workload-
management infrastructure works in tandem
with the operating system, interconnect man-
ager, etc., to address the requirement.

15. Historically, Alpha-based processors were
used because of their excellent floating-point-
performance characteristics. With the advent of
first-generation Itanium processor family
CPUs, it is expected that 64-bit Intel Architec-
ture (IA-64) will eventually dominate in this
space. In the interim, fourth-generation IA-32
Pentium processor family CPUs hold the
price/performance niche.

Applications

Architecture

Provisioning

MPI Application

MPICH-GM Library

Platform HPC for Linux

Myrinet Interconnect

Linux

Figure 6. Production HPC reinvented

Figure 7. Production HPC for Linux
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protocol across low-latency, high-bandwidth, multi-port Myricom Myrinet switches
([14]) used solely to support parallel computing via MPI and the GM driver. By iden-
tifying each available Myrinet port as a resource to the core workload-management
services provided by Platform HPC for Linux ([15]), the provisioning component of
this infrastructure is aware of the static and dynamic attributes of the architecture it
can apply parallel scheduling policies against. Platform HPC for Linux also provides
the control and audit primitives that allow parallel applications to be completely man-
aged. Users’ MPI applications need to be compiled and linked against the application
development environment provided by Myricom. This ensures that the appropriate
GM-protocol modifications to the widely adopted open source MPICH implementa-
tion of MPI are used. Through configuration information, the workload-management
system software based on Platform HPC for Linux is made aware of the enhanced MPI
runtime environment.

Portability was identified as a design goal for MPI. This objective has been carried
through in MPI implementations such as MPICH. Despite this fact, heterogeneous
parallel applications based on MPI must not only use the same implementation of
MPI (e.g., MPICH) but also the same protocol implementation (e.g., GM). In other
words, MPI is a multi-protocol API (Figure 8) in which each protocol implements its
own message formats, exchange sequences, and so on.

Because they can be regarded as a cluster of clusters, it follows that computational
grids might provide a suitable runtime environment for MPI applications. The fact
that grids are concerned with resource aggregation across geographic (and other)
domains further enhances the appeal. Fortunately, Platform HPC for Linux is consis-
tent with Platform MultiCluster – system software that allows independent clusters
each based on Platform LSF to be virtualized into an enterprise grid. This combination
introduces the possibility for exciting new modes of infrastructural provisioning
through various grid-centric scheduling policies – e.g., Grid Advance Reservation,
Grid Fairshare, and Grid Resource Leasing.

Of these grid-centric policies, Grid Resource Leasing (GRL) is par-
ticularly novel and powerful. GRL allows sites to make available
fractions of their resources for use by other sites participating in
their enterprise grid. These collective resources can be occupied by
MPI applications through requirement specifications. In this fash-
ion, users can co-schedule MPI applications to span more than one
geographic location. Even more impressive is the fact that this co-
scheduling is automatically enabled at runtime, that is, existing
MPI applications do not need to be re-linked with special libraries. By jointly leverag-
ing the parallel application management capability already present in Platform HPC
for Linux, in concert with this grid-level scheduling policy of Platform MultiCluster,
MPI application users take advantage of their entire enterprise grid in a transparent
and effective fashion. Platform MultiCluster and its grid-level scheduling policies are
considered in detail elsewhere ([17]).

Summary
Production High Performance Computing (HPC) incorporates a variety of applica-
tions and compute architectures. Widespread use of the Message Passing Interface
(MPI) is better enabled through the use of workload-management system software.
This software allows MPI applications and the compute architectures on which they
execute to be provisioned on demand. This critical link significantly reduces complex-
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ity for the scientist or engineer, thus reducing time to results and ensuring overall
organizational efficiency. A tightly coupled cluster based on the Linux operating envi-
ronment was shown to be a particularly attractive and viable compute architecture.
The incorporation of this environment into a compute grid was also shown to be a
natural progression. Overall, organizations are able to better empower the pursuit of
science and engineering during application development, deployment, and use.
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