
THE MAGAZINE OF USENIX & SAGE
August 2003 • volume 28 • number 4

The Advanced Computing Systems Association &

The System Administrators Guild

&

inside:
PROGRAMMING

McCluskey: Working with C# Classes

34 Vol. 28, No. 4 ;login:

In previous columns, we’ve looked at some of the

basics of the C# language. It’s now time to start exam-

ining in more detail how C# classes work. A class is a

user-defined type, and serves as the fundamental unit

of design and composition for C# programs.

A Class to Represent X,Y Points
Let’s start our discussion by looking at a class whose instances
represent X,Y points. Previously we defined a class as being a
combination of some data (think of a C struct) plus operations
that manipulate instances or objects containing that data. For a
Point class, the data would likely be a couple of integers repre-
senting the point (like 25,100), along with operations to initial-
ize a point object, access the X,Y values in an object, compare
an object to other point objects, convert an object to a string for
printing and formatting, and so on.

Here’s some C# code that illustrates these ideas:

using System;

public class Point {

private int x, y; // X,Y data fields

// constructor
public Point(int x, int y) {

this.x = x;
this.y = y;

}

// copy constructor
public Point(Point p) {

this.x = p.x;
this.y = p.y;

}

// accessor methods
public int getX() { return x; }
public int getY() { return y; }

// conversion to string

public override string ToString() {
return String.Format("({0},{1})", x, y);

}

// equality check against another Point object
public override bool Equals(object obj) {

if (!(obj is Point))
return false;

Point p = (Point)obj;
return x == p.x && y == p.y;

}

// hash code for the object
public override int GetHashCode() { return (x << 16) | y; }

}

public class Test {
public static void Main() {

// create some Point objects on the heap:

Point p1 = new Point(50, 75);
Point p2 = new Point(50, 75);
Point p3 = new Point(100, 150);
Point p4 = new Point(p3);// copy constructor for Point
// access the X,Y values of an object

Console.WriteLine("p1 X,Y = {0},{1}", p1.getX(), p1.getY());

// convert object to string and print it

Console.WriteLine("p4 = {0}", p4);

// exercise the overridden Equals() method

if (p1.Equals(p2))
Console.WriteLine("p1/p2 equal");

if (p2.Equals(p3))
Console.WriteLine("p2/p3 equal");

// get the hash code for an object

Console.WriteLine("p1 hash code = {0}", p1.GetHashCode());
}

}

The Point class defines two data fields to hold the X,Y values.
These are private fields, which means that only methods of the
Point class can access the fields. In particular, it’s not legal to
say:

Point p = new Point(10, 20);
p.x = -125;

If this kind of operation is allowed, then the internal represen-
tation details of a Point object are exposed to the user, generally
an undesirable thing (especially if the representation changes at
a later time). Also, allowing the field to be set directly may vio-
late the integrity and domain of the object. For example, if a

working with C# classes
by Glen
McCluskey

Glen McCluskey is a
consultant with 20
years of experience
and has focused on
programming lan-
guages since 1988.
He specializes in Java
and C++ perfor-
mance, testing, and
technical documen-
tation areas.

glenm@glenmccl.com

35August 2003 ;login:

�

PR

O
G

RA
M

M
IN

Gcheck is made that X,Y are positive integers when the object is
created, then setting the X value to -125 might cause havoc.

The first two methods of the Point class have the same name as
the class itself (Point), and thus are constructors, special meth-
ods used to initialize Point objects. The memory for objects is
allocated from the heap, and the constructor is called to initial-
ize the raw memory.

The second constructor is a copy constructor, used to make a
copy of an already existing Point object. In lieu of using such a
constructor, we could instead say:

Point p1 = new Point(10, 20);
Point p2 = new Point(p1.getX(), p1.getY());

but a copy constructor is a more general mechanism. Note that
a byte-by-byte copy of an object is rarely the right choice, given
that an object may contain internal references to other objects.

getX and getY are accessor methods, used to access the private
X,Y fields in Point objects.

ToString, Equals, and GetHashCode are methods found in the
root class (System.Object), and overridden in Point to provide
custom behavior.

For example, the method System.Object.ToString has certain
generic behavior, illustrated in this example that defines a
dummy Point class:

using System;

public class Point {}

public class Test {
public static void Main() {

Point p1 = new Point();
Console.WriteLine(p1);
Point p2 = new Point();
Console.WriteLine(p2);

}
}

When Console.WriteLine is called, its argument (p1 or p2)
must be converted to a string for printing; the method
System.Object.ToString is used for this because we didn’t
override ToString in the dummy class. The default ToString
behavior uses the name of the class itself as the value returned
by ToString, so the result of running this program is:

Point
Point

For real classes, ToString should have per-object customized
behavior, by including, for example, the distinct X,Y values
found in a Point object.

The same consideration applies to the Equals method, used to
compare two Point objects for equality. Such equality checking
needs to be more sophisticated than merely doing a binary
comparison of the corresponding bytes in the two objects. For
example, objects may contain references to sub-objects, and
comparing the memory pointers of the sub-objects will not
work.

GetHashCode is used to compute a hash code for an object.
The hash code is used by collection classes that represent groups
of objects, such as a hashtable.

When the Point class demo is executed, the output is:

p1 X,Y = 50,75
p4 = (100,150)
p1/p2 equal
p1 hash code = 3276875

Other Ways to Implement the Point Class
There are other ways we could define a Point class. For example,
we could use a struct instead of a class. A struct is a simpler
form of a class, with some restrictions and differences. Struct
objects are allocated on the stack instead of the heap, and, as
discussed in our previous column, have value rather than refer-
ence semantics.

Another possibility is to use a class in a very simple and low-
level way:

public class Point {
public int x, y;
public Point(int x, int y) {

this.x = x;
this.y = y;

}
}

This approach is not much different from using a C struct.
Doing things this way violates the whole object-oriented para-
digm but, at the same time, is a simple approach sometimes
useful in casual programming, e.g., when you’re building a pro-
totype.

A third alternative is to use C# properties. A property is kind of
a cross between a data field and a method. Properties are refer-
enced like data fields, but have get/set methods to control the
access.

Creating and Reclaiming Objects
In the discussion above, we talked about how memory is allo-
cated for class objects, with the class’s constructor called to ini-
tialize the memory. What happens when an object is no longer
in use? How do you get rid of it and reclaim the space?

WORKING WITH C# CLASSES �

Vol. 28, No. 4 ;login:36

C# uses automatic garbage collection to reclaim objects, so
most of the time you don’t need to worry about the details of
memory management. What does this mean in practice? Let’s
look at an example:

using System;
using System.Threading;

public class CtorDtor {

// constructor
public CtorDtor() {

Console.WriteLine("constructor called");
}

// destructor (actually the finalize method
// commented below)
~CtorDtor() {

Console.WriteLine("destructor called");
}

//protected override void Finalize() {}
}

public class Test {

// create a CtorDtor object, which
// becomes garbage when f() exits

static void f() {
CtorDtor cd = new CtorDtor();

}

public static void Main() {
f();

//GC.Collect();
//Thread.Sleep(500);

Console.Write("Press Enter to quit program: ");
Console.ReadLine();

}
}

In this code, the Main method calls f, and f calls new to create
an object of the CtorDtor class on the heap. Then f returns, and
at this point, there is no way to reference the CtorDtor object
created in f, and thus this object has become garbage.

Such garbage is subject to reclamation at any time, but garbage
collectors typically run in a separate program thread and try to
minimize performance overhead. For example, a garbage collec-
tor may run only when free memory is getting low. It’s unwise
to assume particular garbage collection behavior.

When the garbage collector runs, one of the things it does is call
finalize methods on objects. A finalize method is used to per-
form any cleanup that is required (other than reclaiming space)
– for example, freeing up system resources not under the con-
trol of the C# runtime system.

C# supports C++ destructor syntax, like this:

~CtorDtor() {}

but this syntax is actually an alias for:

protected override void Finalize() {}

Finalize methods are not really the same as destructors. In the
C++ world, a destructor is called when an object goes out of
scope (such as a stack-based object at function exit) or when
the delete operator is called for a heap-allocated object.

By contrast, a finalize method is called by the garbage collector,
and it’s risky to rely on the garbage collector behaving in a spe-
cific way (or running at all).

When the CtorDtor demo program runs, the output indicates
that the destructor (finalize method) is not called until the pro-
gram exits. One way of forcing the finalizer to run sooner is to
explicitly call garbage collection, using the commented lines of
code. This approach works, but is not recommended. Before
you start relying on explicit garbage collection calls, it pays to sit
down and really study how garbage collection works – it’s a
tricky area to make assumptions in.

Explicitly Disposing of Objects
Garbage collection isn’t always effective in calling finalize meth-
ods in a timely way. What do you do if you have a class whose
objects represent critical system resources, resources that are in
short supply? One solution is to implement the IDisposable
interface in a class:

using System;

public class CtorDispose : IDisposable {

// a resource, with a value of -1 indicating
// that the resource is currently unallocated

private int resource = -1;

public CtorDispose() {
// allocate resource
resource = 100;

}

~CtorDispose() { DoDispose(); }
void DoDispose() { // free up resource

resource = -1;
}

public void Dispose() {
DoDispose();
GC.SuppressFinalize(this);

}
}

37August 2003 ;login:

�

PR

O
G

RA
M

M
IN

Gpublic class Test {
public static void Main() {

CtorDispose cd = new CtorDispose();
cd.Dispose();

}
}

An interface like IDisposable declares certain methods, in this case Dispose. A class that implements the interface must define the
methods. Implementing IDisposable and defining Dispose means that a class offers a way to directly force object cleanup, without
waiting for the finalize method to be called by the garbage collector (the finalize method cannot be called directly, and garbage col-
lection may not occur in a timely way).

In the code above, Dispose is called directly, and the method frees the system resource. The garbage collector is then informed that
the object (this) should not be finalized at garbage collection time.

In future columns, we’ll look at some further details of how classes work, and how classes and interfaces can be combined to build
applications.

THE TCLSH SPOT �

