®
® o
THE MAGAZINE OF USENIX & SAGE
, . August 2003 e volume 28 ¢ number 4

PROGRAMMING
Turoff: Practical Perl: Cleaning Up with Modules

USENIX & SAGE

The Advanced Computing Systems Association &
The System Administrators Guild

ractical perl|

Cleaning Up with Modules

by Adam Turoff

Adam is a consultant
who specializes in
using Perl to manage
big data. He is a
long-time Perl Mon-

er, a technical editor
or The Perl Review,
and a frequent pre-
senter at Perl confer-
ences.

ziggy@panix.com

A friend of mine who occasionally writes some Perl was
working on a CGl program to automate data entry into
a database. He is not a programmer by trade, but he
uses Perl to manage information critical to his job. Pro-
gramming is a hobby for him, more intellectually stimu-
lating than trainspotting and less important to him than
his true calling, studying the English language.

My friend asked me to look at some of his CGI programs. His
programs worked, but he felt they were “ugly.” A Java program-
mer colleague of his recommended that he clean them up by
creating a series of Java-like objects and classes. A better way to
clean up a Perl program is through a mixture of objects, classes,
and standard Perl] data structures.

Every so often, we all write programs that just “feel wrong.” A
good indication is when it takes too much effort to do some-
thing that should be easy to do. Another indication is when
some Perl feature is used in what feels like an “unclean” fashion.
Such misuses can increase the cost of maintaining and extend-
ing a Perl program over time, and can lead to programs that
work yet are difficult to fathom.

Creating Dynamic Web Pages

Perl is a great language for casual programmers who write code
occasionally in service of a greater goal. These people often use
Perl to write small a CGI program that automates some task.
There are very many ways to write Web-based applications,
including using a templating system, building XML-based sys-
tems, and using the venerable CGl.pom module. Using CGl.pm to
generate dynamic HTML pages may not be the best system or
the most elegant mechanism, but it works well and is quite easy
to use.

Using CGl.pm can have its downsides, though. Its HTML-gen-
eration interface is an awkward way to replace HTML syntax
with Perl syntax to create static HTML. This technique obscures
the content of the document being created by hiding it within
nested Per] subroutine calls:

August 2003 ;login: PRACTICAL PERL

#!/usr/bin/perl -Tw

use strict;

use CGI qw(:standard);

print header('text/html');

print start_html("Test Page");

print h1("Test Page");

print table(Tr(td("a"), td("b")), Tr(td("c"), td("d")));
print end_html();

A better use of CGl.pm’s HTML-generation interface is to focus
on wrapping repetitive Perl data inside HTML tags through
simple loops. In this fashion, data can be abstracted into one of
many places: a configuration file, a module, or a database. The
structure of the HTML to be created is less likely to change fre-
quently, so separating the content (data) from the presentation
(HTML-generating code) will tend to simplify the program in
the long run. After all, it is easier to update a database or change
a configuration file than it is to modify and test a program for
every little data fix.

This is the approach my friend used with his code. The goal in
the following code samples is to create a simple HTML form
with a series of fields. The fields are specified in the @fields
array, and the code to generate the form simply iterates over all
of the fields to be displayed. Each element in the @fields array is
a hash reference that defines all of the aspects of an HTML
form field to be displayed.

#1/usr/bin/perl -Tw
use strict;
use CGI qw(:standard);

my @fields = (
{
-name => "name”,
-label=> "Name",
-size=>50,
-maxlength=>50,
-procedure=>\&CGl::textfield,

-name => "subscribe’,

-label=> "Subscribe",
-values=>[gw(Yes No)],
-procedure=>\&CGl::radio_group,

-name => "availability",
-label=>"Availability",

-values=> [qw(Mon Tue Wed Thu Fri)],
-procedure=>\&CGl::checkbox_group,

-name => "state",
-label=>"State",
-values=> [undef, gw(Maryland DC Virginia)],

PROGRAMMING

41

42

-procedure=>\&popup_menu,

2

For added simplicity, each field definition within @fields con-
tains a reference to the CGl.pm function that will display that
field. This has the effect of making the @fields array a dispatch
table as well as a rudimentary data dictionary. The hash keys in
the element definition are taken from the keys used by the
CGl.pm HTML-generation subs that create each kind of input
field. By combining these two features, creating the HTML form
becomes very easy:

my @rows;
foreach my $row (@fields) {
my $sub = $row->{'-procedure'};
push (@rows, Tr(td($row->{-label}), td($sub->(% $row))));
}
print start_form(), table(@rows);
print submit(), reset(), end_form();

Designing with Modules

After working with this program for a while, my friend felt that
the code was starting to get ugly. His colleague, a Java program-
mer, recommended creating a class called a FieldList object to
represent a list of HTML form fields, represented by Field
objects. Processing a FieldList would involve creating a
FieldListlterator object to examine the elements one by one.

This is an area where Perl programmers and Java programmers
have differing opinions. Perl programmers generally feel that
creating artificial container objects like FieldList and
FieldListlterator are a waste of time. Perl’s array variables and
the foreach loop exist to hold lists of values and examine them
iteratively, thus obviating artificial container and iterator
classes.

There is some wisdom in creating a Field class, or rather a hier-
archy of field classes to handle different kinds of HTML form
fields. The field definitions listed above in @fields are somewhat
repetitive. Each field will contain very similar values for the
-label and -name keys. The -label key specifies the text to appear
to the left of a form field, and the -name key specifies the name
of the form variable to appear in the HTML output. Note that
there’s a very simple relationship between the -name and -label
values: In our sample program, the -name value can be derived
from the -label value by lowercasing it and removing space
characters.

There are other common behaviors shared by all field objects.
In this program, all fields are displayed within a two-element
HTML table row, with the text label appearing in the left cell

and the HTML form input field appearing in the right cell. And
then there are differences between individual field types. Setting
the maxlength makes sense only with text fields.

A better way to structure this code would be to create a simple
Field package (or class) that handles the common behaviors and
then create specialized packages that describe the actual differ-
ences between text fields, radio groups, checkboxes, and other
HTML form input fields. Here’s the Field class that describes
the common behaviors of HTML form input fields for this
application. Note that the init will create a default CGI variable
name from a field’s label, a technique that reduces redundancy
found in the older version of the program.

#!/usr/bin/perl -w
use strict;
package Field;
use CGI qw(:standard);
sub init {
my $self = shift;
my %params = @_;

Assign the key/value pairs for this object
while(my ($key, $value) = each %params) {
$self->{$key} = $value;
}
Create the field name from the text label
my $name = "\L$self->{-label}";
$name =~ s/ /_/g;
$self->{-name} = $name;
return $self;
}
sub display_row {
my $self = shift;
my $sub = $self->{-procedure};

return Tr(td($self->{-label}), td($sub->(% $self)));
}

Creating a package to describe text fields is not difficult. The
first step is to declare that this text field package inherits from
the Field package (via a use base; declaration). This package
needs a constructor (a method named new) that creates new
text field objects with a minimal amount of information speci-
fied by the user. The only information that is absolutely neces-
sary is the label for this input field. The CGI field name for this
input field can be derived using the Field::init method. Attrib-
utes like the field size and the maximum input length can be
defaulted to sensible values. Finally, all text fields will use the
CGl::textfield subroutine to display themselves.

Here is the complete package definition this application needs
to create CGI text input fields. The new method receives the
label for a text field and uses sensible default values for the rest
of the field’s attributes. The size and maxlength methods exist
to override the default values for the -size and -maxlength
attributes.

Vol. 28, No. 4 jlogin:

package Field::Text;
use base 'Field’;
use CGlI;

sub new {

my $class = shift;

my $label = shift;

Create an object

my $self = bless {}, $class;
Finish initialization
$self->init(-label => $label,

-size => b0,

-maxlength => 50,

-procedure => \&CGl::textfield);
}
sub size {

my $self = shift;
$self->{-size} = shift;
}
sub maxlength {
my $self = shift;
$self->{-maxlength} = shift;
}

The other input field types (checkbox groups, pop-up menus,
radio groups) are all similar in that they have multiple values. A
good way to describe these similarities is to define a
Field::Group package and derive specializations of that package
for the specific input field types.

package Field::Group;
use base 'Field’;

sub init_group {
my $self = shift;
my $procedure = shift;
my $label = shift;
my @values = @_;
$self->init(-label => $label,
-procedure => $procedure,
-values => \@values);
}

The last few packages handle creation of radio groups, check-
box groups and pop-up menus. They are all very similar; only
the procedure to display them varies:

package Field::RadioGroup;
use base 'Field::Group’;
use CGlI;

sub new {
my $class = shift;

my $self = bless {}, $class;
$self->init_group(\&CGl::radio_group, @_);
}
package Field::CheckboxGroup;
use base 'Field::Group’;
use CGI;

August 2003 ;login: PRACTICAL PERL

sub new {
my $class = shift;

my $self = bless {}, $class;
$self->init_group(\&CGl::checkbox_group, @_);
}
package Field::PopupMenu;
use base 'Field::Group’;
use CGI;
sub new {

my $class = shift;

my $self = bless {}, $class;
$self->init_group(\&CGl::popup_menu, @_);
1

Cleaning Up with Modules

Now that we have a set of packages for creating CGI input
fields, it’s time to revisit the application. Recall that the first step
was to create a list of field definitions, then create the HTML
form. With the Field modules created for this application, it is
easy to simply and succinctly declare what fields are used in this
CGI application. There is no repetition in defining -label and
-name attributes, and the common attributes of each type of
field are defined once and only once.

#1/usr/bin/perl -Tw

use strict;
use Field; ## pull in all the Field packages
use CGI qw(:standard);

my @fields = (
new Field::Text('Name'),
new Field::RadioGroup('Subscribe’, 'Yes', 'No'),
new Field::CheckboxGroup('Availability', 'Mon’,
‘Tue', 'Wed', 'Thu', 'Fri'),
new Field::PopupMenu('State’, undef,
‘Maryland', 'DC', 'Virginia'),
);

'n.w.y @rows;
foreach my $field (@fields) {
push (@rows, $field->display_row());

print start_form(), table(@rows);
print submit(), reset(), end_form();

Conclusion

Over time, all software has a tendency to be extended beyond its
original design and “get ugly.” One technique for improving
code that “feels wrong” is to restructure it and extract common
behaviors into modules. In this example, the code for construct-
ing CGI form fields was abstracted into a Field package and its
subpackages. The main CGI program was simplified and now
focuses on what fields need to be created, not the arcane details
of how to create those fields.

PROGRAMMING

43

