
52    AU G U S T 20 13  VO L . 3 8 N O. 4 	 www.usenix.org

COLUMNS

Building a Better Dictionary
D A V I D B E A Z L E Y

One of the software projects that I maintain is the PLY parser gen-
erator (http://www.dabeaz.com/ply). In a nutshell, PLY is a Python
implementation of the classic lex and yacc tools used for writing

parsers, compilers, and other related programs. It’s also not the kind of
program that tends to change often—to be sure, I’m not aware of any sort of
space-race concerning the implementation of LALR(1) parser generators
(although perhaps there’s some startup company Lalrly.com just waiting to
strike parsing gold).

As a stable piece of software, PLY only receives occasional bug reports, which are mostly
in the form of minor feature requests; however, I recently received a report that PLY was
randomly failing its unit tests on Python 3.3. Specifically, if you ran its unit test suite twice
in succession, different sets of unit tests would fail each time. For a program involving no
randomness or threads, this development was puzzling to say the least.

This problem of randomly failing unit tests was ultimately tracked down to a recent security-
related change in Python’s dictionary implementation. I’ll describe this change a bit later, but
this incident got me thinking about the bigger picture of Python dictionaries. If anything, it’s
safe to say that the dictionary is part of the bedrock that underlies the entire Python inter-
preter. Major parts of the Python language, such as modules and objects, use dictionaries
extensively. Moreover, they are widely used as data structures in user applications. Last, but
not least, the implementation of dictionaries is one of the most studied and tuned parts of the
interpreter.

Given their importance, you might think that the dictionary implementation would be some-
thing that’s set in stone. To be sure, Python’s core developers are reluctant to make changes
to something so important; however, in the past couple of years, the implementation of
dictionaries has been evolving in interesting and unusual ways. In this article, I hope to peel
back the covers a little bit and discuss how dictionaries work along with some notable recent
changes.

Dictionaries as Data Structures
Most Python programmers are familiar with using a dictionary as a simple data structure.
For example:

s = {

 ‘name’: ‘ACME’,

 ‘shares’: 100,

 ‘price’: 123.45

}

David Beazley is an open source
developer and author of the
Python Essential Reference (4th
Edition, Addison-Wesley, 2009)

and Python Cookbook (3rd Edition, O’Reilly &
Associates, 2013). He is also known as the
creator of Swig (http://www.swig.org) and
Python Lex-Yacc (http://www.dabeaz.com/
ply/index.html). Beazley is based in Chicago,
where he also teaches a variety of Python
courses. dave@dabeaz.com

www.usenix.org	   AU G U S T 20 13  VO L . 3 8 N O. 4  53

COLUMNS
Building a Better Dictionary

A dictionary is simply a mapping of keys to values. To perform
calculations, you simply access the key names:

>>> s[‘shares’] * s[‘price’]

12345.0

>>> s[‘shares’] = 75

>>> s[‘name’]

‘ACME’

>>>

Dictionaries are unordered. Thus, if you look at the ordering
of the keys, they’re usually not in the same order as originally
specified when the dictionary was created. For example:

>>> s

{‘price’: 123.45, ‘name’: ‘ACME’, ‘shares’: 75}

>>> s.keys()

[‘price’, ‘name’, ‘shares’]

>>>

Although the lack of ordering sometimes surprises newcomers,
it’s not something that causes concern in most programs; it’s just
an artifact of the implementation.

From dictionaries to classes is only a small step. For example,
suppose you have a class like this:

class Stock(object):

 def __init__(self, name, shares, price):

 self.name = name

 self.shares = shares

 self.price = price

If you make an instance, it’s actually just a thin wrapper around
a dictionary. For example:

>>> s = Stock(‘ACME’, 100, 123.45)

>>> s.shares * s.price

12345.0

>>> s.__dict__

{‘price’: 123.45, ‘name’: ‘ACME’, ‘shares’: 100}

>>>

Naturally, most of this is old news to anyone who’s been pro-
gramming in Python for a while.

Dictionary Implementation
Under the covers, dictionaries are implemented as hash tables.
Each entry in a dictionary is represented by a structure (hash-
val, key, value) where hashval is an integer hashing code, key
is a pointer to the key value, and value is a pointer to the value.
The special hash value used in this triple is not something you
normally think about, but it’s easily obtained using the built-in
hash() function (note: to get examples that exactly match what’s
shown, use Python 2 compiled for a 64-bit platform):

>>> hash(‘name’)

-4166578487145698715

>>> hash(‘shares’)

-5046406209814648658

>>>

When an empty dictionary is first created, a small eight-element
array of dictionary entry structures is allocated. Entries are
inserted into this array at positions determined by bit-masking
the above integer hash codes. For example:

>>> hash(‘name’) & 7

5

>>> hash(‘shares’) & 7

6

>>> hash(‘price’) & 7

2

>>>

The numerical order of the above positions determine the order
in which keys will appear when you look at a dictionary. For
example:

>>> s.keys()

[‘price’, ‘name’, ‘shares’]

>>>

If you add a new key to a dictionary, its insertion position is
determined in the same way. For example:

>>> hash(‘time’) & 7

7

>>> s[‘time’] = ‘9:45am’

>>> s

{‘price’: 123.45, ‘name’: ‘ACME’, ‘shares’: 75, ‘time’: ‘9:45am’}

>>>

If two keys map to the same index, a new position is found by
repeatedly perturbing the index to a new value until a free slot
is found. Without explaining the rationale for the mathematical
details, the following session illustrates what happens if you add
a new entry s[‘account’] = 1 to the above dictionary:

>>> hval = hash(‘account’)

>>> index = hval & 7

>>> index # Collision with “price”

2

>>> perturb = hval

>>> index = (index << 2) + index + perturb + 1

>>> index & 7 # Collision with “name”

5

>>> perturb >>= 5

>>> index = (index << 2) + index + perturb + 1

>>> index & 7 # Collision with “name”

5

54    AU G U S T 20 13  VO L . 3 8 N O. 4 	 www.usenix.org

COLUMNS
Building a Better Dictionary

>>> perturb >>= 5

>>> index = (index << 2) + index + perturb + 1

>>> index & 7 # Free slot: position 0

0L

>>>

Indeed, if you try it, you’ll find that the new entry appears first in
the resulting dictionary:

>>> s[‘account’] = 1

>>> s

{‘account’: 1, ‘price’: 123.45, ‘name’: ‘ACME’, ‘shares’: 75, ‘time’:

‘9:45am’}

>>>

As dictionaries fill up, that collisions will occur and perfor-
mance will degrade becomes increasingly more likely (for
instance, notice that four different table positions were checked
in the above example). Because of this, the size of the array used
to hold the contents of a dictionary is increased by a factor of
four whenever a dictionary becomes more than two-thirds full.
This is a rather subtle implementation detail, but you can notice
it if you carefully observe what happens if you add a sixth entry
to the above dictionary:

>>> s

{‘account’: 1, ‘price’: 123.45, ‘name’: ‘ACME’, ‘shares’: 75, ‘time’:

‘9:45am’}

>>> s[‘date’] = ‘05/26/2013’

>>> s

{‘account’: 1, ‘name’: ‘ACME’, ‘price’: 123.45, ‘shares’: 75,

‘time’:’9:45am’, ‘date’: ‘05/26/2013’}

>>>

Notice how ‘name’ and ‘price’ swapped places when the next
item was inserted. This is due to an expansion of the dictionary
size from 8 to 32 entries and a recomputation of the hash table
positions. In the new dictionary, the new positions for ‘name’ and
‘price’ are as follows:

>>> hash(‘name’) & 31

5

>>> hash(‘price’) & 31

10

>>>

To be fair, these kinds of details are not something that most
programmers ever need to concern themselves with other than
to realize that dictionaries involve some extra overhead both in
computation and memory.

Digression: Dictionary Alternatives
If you’re using dictionaries to store a lot of small data structures,
it’s probably worth noting that there are much more efficient
alternatives available. For example, even a small dictionary has a
memory footprint larger than you might expect:

>>> s = { ‘name’: ‘ACME’, ‘shares’: 100, ‘price’: 123.45}

>>> import sys

>>> sys.getsizeof(s)

280

>>>

Here you see that the dictionary is 280 bytes in size (actually,
296 bytes in Python 3.3). Keep in mind, that this size is just for
the dictionary itself, not for the items stored inside. If this seems
like a lot, you’re right. The extra overhead can add up signifi-
cantly if creating a large number of small data structures (e.g.,
imagine a program that’s read a million line CSV file into a list of
dictionaries representing each row).

Class instances are even more inefficient, adding an additional
64 bytes of overhead to the total size. In fact, a basic instance
with no data at all requires 344 bytes of storage when one adds
up all of the parts. For example:

>>> s = Stock(‘ACME’, 100, 123.4)

>>> sys.getsizeof(s)

64

>>> sys.getsizeof(s.__dict__)

280

>>>

If you’re working with data, there are some better choices. One
such option is to create a named tuple:

>>> from collections import namedtuple

>>> Stock = namedtuple(‘Stock’, [‘name’, ‘shares’, ‘price’])

>>> s = Stock(‘ACME’, 100, 123.45)

>>> s.name

‘ACME’

>>> s.shares * s.price

12345.0

>>> sys.getsizeof(s)

80

>>>

A named tuple gives you the nice attribute access normally
associated with a class and much more compact representation;
however, as a tuple, the attributes are immutable. If you need
mutability, consider defining a class with __slots__ instead:

www.usenix.org	   AU G U S T 20 13  VO L . 3 8 N O. 4  55

COLUMNS
Building a Better Dictionary

class Stock(object):

 __slots__ = (‘name’, ‘shares’, ‘price’)

 def __init__(self, name, shares, price):

 self.name = name

 self.shares = shares

 self.price = price

This produces an even more compact representation:

>>> s = Stock(‘ACME’, 100, 123.45)

>>> s.name

‘ACME’

>>> s.shares = 75

>>> sys.getsizeof(s)

72

>>> hasattr(s, ‘__dict__’) # No underlying __dict__

False

>>>

The use of __slots__ on a class is actually the most compact
representation of a data structure in Python without resorting to
lower-level hacks such as binary encodings or C extensions. It’s
even smaller than using a tuple:

>>> s = (‘ACME’, 100, 123.45)

>>> sys.getsizeof(s)

80

>>>

Therefore, if you’re working with a lot of data, and you’re think-
ing about using dictionaries because of their programming
convenience, consider some of these alternatives instead.

Randomized Key Ordering
In late 2011, a new kind of denial-of-service attack that exploited
hash-table collisions was unveiled (see “Efficient Denial of
Service Attacks on Web Application Platforms” at http://
events.ccc.de/congress/2011/Fahrplan/events/4680.en.html).
Without going into too many details, this attack involves sending
carefully crafted requests to a Web server that push Python’s
hash-table collision handling algorithm into worst-case O(n**2)
performance—the end result of which is that a clever hacker can
make a server consume vast numbers of CPU cycles.

To combat this, Python now randomly salts the computa-
tion of hash values from run-to-run of the interpreter. This is
something that is enabled by default in Python 3.3 or that can
be enabled by the -R option to the interpreter in Python 2.7. For
example:

bash % python -R

>>> s = {‘name’: ‘ACME’, ‘shares’:100, ‘price’:123.45 }

>>> s

{‘shares’: 100, ‘name’: ‘ACME’, ‘price’: 123.45}

>>>

bash-3.2$ python -R

>>> s = { ‘name’: ‘ACME’, ‘shares’:100, ‘price’:123.45 }

>>> s

{‘name’: ‘ACME’, ‘shares’: 100, ‘price’: 123.45}

>>>

The random salting makes it impractical for an attacker to
construct requests that will work everywhere; however, the
randomization can also cause funny things to happen in certain
programs that use dictionaries.

In the case of PLY, randomness of dictionary order changed
the numbering of states in a large automatically created state
machine. This, in turn, caused a certain randomness in the
ordering of output messages being checked by unit tests.

Although random ordering is harmless to the overall execution
of the program, I had to fix a number of unit tests to take it into
account. I also selectively introduced a few uses of OrderedDict
instances (from the collections module) to force a predictable
order on data structures of critical importance to the construc-
tion of state tables.

Split-Key Dictionaries
Python 3.3 introduces yet another improvement on dictionar-
ies related to their use in class instances. In a class such as the
Stock class presented earlier, observe that every instance is
going to have exactly the same set of keys. Taking this observa-
tion into account, Python 3.3 dictionaries actually have two
internal representations; a combined representation where keys
and values are stored together and a split representation where
the keys are only stored once and shared among many different
dictionaries.

For instances, the more compact split representation is used.
This is a bit hard to view directly, but here is a simple example
that shows the impact on the memory footprint:

>>> s = Stock(‘ACME’, 100, 123.45)

>>> sys.getsizeof(s)

64

>>> sys.getsizeof(s.__dict__) # Note: Greatly reduced size

104

>>>

Indeed, if you try a further experiment in which you create one
million identical instances, you’ll find the total memory use to be
about 169 MB. On the other hand, creating one million identical
dictionaries requires almost 293 MB.

This change in implementation is interesting in that it now
makes the use of a class a much better choice for storing data
structures if you care about memory use. The only downside
is that all benefits are lost if you perform any manipulation of

56    AU G U S T 20 13  VO L . 3 8 N O. 4 	 www.usenix.org

COLUMNS
Building a Better Dictionary

instances that add attributes outside of the __init__() method.
For example:

>>> sys.getsizeof(s.__dict__)

104

>>> s.date = ‘5/27/2013’

>>> sys.getsizeof(s.__dict__) # Flips to combined dictionary

296

>>>

Final Words
If there’s any take-away from this article, it might be that parts
of Python often assumed to be frozen in time are still a target of
active development. Dictionaries are no exception. If you make
the move to Python 3.3, you’ll find that they are used in a much
more efficient way than before (especially for instances).

This is by no means the last word. At this time, Raymond Het-
tinger, one of Python’s core developers, has been experimenting
with yet another dictionary representation which is even more
memory efficient. Some details about this can be found at http://
code.activestate.com/recipes/578375-proof-of-concept-for-a
-more-space-efficient-faster/.

APRIL 2–4, 2014 • SEATTLE, WA

11th USENIX Symposium on Networked Systems
Design and Implementation

Join us in Seattle, WA, April 2-4, 2014, for the 11th USENIX Symposium on Networked Systems
Design and Implementation (NSDI ‘14). NSDI focuses on the design principles, implementation,
and practical evaluation of networked and distributed systems. Our goal is to bring together
researchers from across the networking and systems community to foster a broad approach to
addressing overlapping research challenges.

Check out the Call for Papers at www.usenix.org/conference/nsdi14/call-for-papers. Abstract
 submissions will be due September 20, 2013, while full paper submissions will be due September
27, 2013. Authors will be notified of acceptance or rejection by December 13, 2013.

Program Co-Chairs: Ratul Mahajan, Microsoft Research, and Ion Stoica, University of California,
Berkeley

www.usenix.org/conference/nsdi14

Why Join USENIX?
We support members’ professional and technical
development through many ongoing activities, including:

 Open access to research presented at our events

 Workshops on hot topics

 Conferences presenting the latest in research and practice

 LISA: The USENIX Special Interest Group for Sysadmins

 ;login:, the magazine of USENIX

 Student outreach

Your membership dollars go towards programs including:
 Open access policy: All conference papers and videos are immediately free to everyone upon

 publication

 Student program, including grants for conference attendance

 Good Works program

Helping our many communities share, develop, and adopt ground-breaking ideas in advanced technology

Join us at www.usenix.org

