
www.usenix.org	   A P R I L 20 13  VO L . 3 8 N O. 2  45

BOOKSBook Reviews
E L I Z A B E T H Z W I C K Y , W I T H M A R K L A M O U R I N E A N D R I K F A R R O W

Naked Statistics: Stripping the Dread from the Data
Charles Wheelan
W. W. Norton and Company, 2013. 260 pp.
ISBN 978-0-393-07195-5
Reviewed by Elizabeth Zwicky

I am a little bit obsessed with introductory statistics books,
in my attempt to convince the rest of the world that the most
minimal grasp of mathematics will in fact combine with a tiny
amount of statistics to produce all sorts of impressive-looking
abilities. This includes not only the ever-popular ability to
figure out how the news is lying to you, but also all kinds of
everyday magic in trying to design, build, debug, or maintain
computer systems.

The author of Naked Statistics shares this opinion, and so
has written a book which aims at explaining some reasonably
complex and subtle statistical concepts without requiring you
to do any noticeable amount of math. It does include the math,
should you want to follow along, but it hides it at the end of the
chapters for easier skipping by people who are not enthusiastic
about numbers.

If you have been resisting statistics because it seems to be made
up of complex and incomprehensible mathematical formulae
with the occasional curve, this book may change your mind.
You will probably also enjoy it if you vaguely remember a sta-
tistics course in college but aren’t quite sure how it relates to
things you might care about. It’s not directly related to com-
puters, and if you find yourself needing to calculate your own
statistics, you might end up wanting a more number-heavy
introduction. (Or not. It’s surprising how often the numbers are
less important than the ability to say, for instance, “Shouldn’t
we be comparing these to some population?” or “Are you sure
this correlation is relevant?”)

Algorithms in a Nutshell
George T. Heineman, Gary Pollice, Stanley Selkow
O’Reilly, 2009. 335 pp.
ISBN 978-0-596-51624-6
Reviewed by Elizabeth Zwicky

Algorithms in a Nutshell also attempts to bring a difficult and
useful domain to non-specialists. It doesn’t do as good a job
at avoiding looking and sounding like a mathematics text,
although it does try. I’m still looking for an unthreatening
algorithms book.

On the other hand, take their word for it and mine: at some
point you are going to need to write code that does searches,
or sorts, or looks through a problem space. Or you are going to
need to deal with somebody else’s code for these things that
is dying horribly. At that point, knowing the best and worst
cases for different algorithms is going to be important. This is
as practical and friendly an introduction as you’re going to get,
heavy on the examples.

It’s not going to substitute for a good computer science educa-
tion, but it will remind you of the classes you’ve forgotten or bail
you out when you run up against situations where your code—or
somebody else’s—mystifyingly fails to obey your expectations.
And they include examples of how you evaluate algorithms, too.

Don’t skip the ending chapters, which include some useful gen
eral principles, several of which are more elegant versions of
my favorites; don’t write your own implementation of any basic
algorithm if you can help it, and when faced with a problem best
solved with graph theory, immediately turn it into a simpler
problem that no longer involves graphs.

The Art of Readable Code
Dustin Boswell and Trevor Foucher
O’Reilly, 2011. 184 pp.
ISBN 978-0-596-80229-5
Reviewed by Elizabeth Zwicky

I am imagining my college roommate at the moment, a guy who
was a professional programmer and scornful of the idea of a
computer science degree (it was a rental, not a dorm). He eventu-
ally learned, at the cost of a weekend of misery, that we were
not kidding about sort algorithms mattering, but he would have
rolled on the floor in hysterics at the idea of reading a book that
has two entire chapters on naming variables and two more on
how to write comments. That statistics stuff, it makes some kind
of sense, but really, nobody with any sense worries about petty
things like how to name variables.

We were young then, and stupid, and many years have come and
gone. In that time, I’ve learned a lot about readable and unread-
able code, and have many of my own rules of thumb (including
one the authors missed: “Everybody is still basically a small
child. Avoid variable names that are suggestive or naughty-
sounding.”). Nonetheless, I found myself saying, “Ah, yes, that
makes sense—I never thought about that” from time to time,
and “Oh, that explains some intuitions I never quite figured out”
quite frequently.

46    A P R I L 20 13  VO L . 3 8 N O. 2 	 www.usenix.org

BOOKS

Take my word for it; it matters how you name your variables. You
can find this out from a book, or you can spend a lot of extra time
debugging. The book is cheaper. Don’t worry; it’s not like That
Guy who insists there is one true way to name variables and
one true way to indent things. It’s sensible, flexible advice, with
examples to show you why you care.

On the other hand, if you were hoping somebody would just tell
you the answer and then you could crank out readable code, this
book will disappoint you, and it has to. Readability, in anything,
is difficult and requires careful thought about readers. This is
good advice that will help you do that thinking, but you’re still
going to have to work.

Living with Complexity
Donald A. Norman
MIT Press, 2011. 265 pp.
ISBN 978-0-262-01486-1
Reviewed by Elizabeth Zwicky

Living with Complexity is a book about our attitudes toward com-
plexity and technology, which are much maligned and yet central
to our day-to-day experiences.

Norman argues that our immediate opinions are wrong. He
offers some strategies for both individuals and designers to deal
with complexity, and he suggests new ways of thinking about
issues around complexity.

There are several Donald Norman books that I love very much.
This one I think is nice enough, but sadly, not earthshaking. It
makes several good points (complexity is not inherently bad;
social factors drive much complexity; services are often over-
looked; and how is it that we can still be this bad at power strips
and projectors?).

Ultimately, though, it fails to come together into a coherent
whole. I prefer The Design of Everyday Things, but if you can’t
lay hands on it and haven’t encountered Donald Norman before,
Living with Complexity would certainly be a worthwhile read. It
might seem more captivating to me if I hadn’t been familiar with
his earlier work.

MapReduce Design Patterns
Donald Miner and Adam Shook
O’Reilly, 2012. 227 pp.
ISBN 978-1-449-32717-0
Reviewed by Elizabeth Zwicky

MapReduce is the underlying technology for most companies
dealing with big data. If you want to throw around serious
amounts of data—you don’t just want to use the cloud, you want
to be the cloud—you are going to end up using MapReduce. In

many situations, you’re going to use it with some sort of insula-
tion, using a language like Pig designed to hide what’s going on
underneath. But there’s a limit to how far that will take you, and
programming for MapReduce requires some twists in how you
may be used to working.

MapReduce Design Patterns is a good place to start if you need
to work directly in MapReduce for some reason. If MapReduce
is further below you, you may not be interested until you start
pushing the envelope, at which point you need to think more
carefully about what’s going on. And, quite possibly, to drop into
straight MapReduce.

I use Pig a lot, and pure MapReduce occasionally, so I was
familiar with the basic patterns, but I still found some new and
interesting ideas.

Getting Started with Raspberry Pi
Matt Richardson and Shawn Wallace
O’Reilly Media, 2013. 176 pp.
ISBN 978-1-449-34421-4
Reviewed by Mark Lamourine

When I describe a Raspberry Pi to most people, the first question
I usually get is, “But what does it do?” Getting Started with Rasp-
berry Pi, O’Reilly’s introduction to learning computing with the
Raspberry Pi, is one attempt to answer that question.

The Raspberry Pi has become the hot small hobbyist computer
in the last year. It’s meant to be a tool for people who want to
learn and experiment with programming, network services,
and robotics. The previous leader in this space was the Arduino,
and people have asked me why the world needs another hobby-
ist computer, but there’s really no comparison. The Pi is a fully
outfitted general purpose computer, while the Arduino is a
programmable microcontroller. This means that the Pi is suited
to different kinds of projects than the Arduino. In fact, there are
a number of projects that use the Pi to program the Arduino. The
two are really complimentary.

The O’Reilly “Make” books are aimed at people who mean to get
their hands dirty. While they are often directed at beginners,
they don’t hand-hold or subject readers to long lectures on fun-
damentals. Instead they focus on small projects with achievable
goals and then leave the reader with tips for further reading.

The first chapter walks the reader through setting up their Pi.
The following chapters gradually introduce Linux, Python, and
then move on to hardware projects using the Raspberry Pi GPIO
pins directly, or adding an Arduino. Each chapter finishes with
a “Going Further” section that includes references (and in the
eBook I read, links) to additional resources on the topic.

www.usenix.org	   A P R I L 20 13  VO L . 3 8 N O. 2  47

BOOKS

The format of the book follows O’Reilly’s “Make” imprint style.
This is the signature red and blue logo, big simple bold text on a
crisp white background, and hand-drawn graphics. It’s easy to
read and very comfortable and welcoming.

This book is very well suited to the adventurous beginner. The
chapters are clear and complete. It is a good idea to keep a Web
browser and search engine handy. The range of topics means
that there might even be something new for an experienced
server administrator who might not have had a chance to play
with sensors or robotics.

The low cost of the Raspberry Pi has meant that they are being
purchased by (and being given as gifts to) people who have only
ever had the slightest exposure to computers outside the canned
Windows or Mac OS experience. Will it be the Mountains of
Robotics, the Seaside of Media, the Caves of Programming, or
something else entirely? Getting Started with Raspberry Pi is
the signpost at the crossroads.

Practical Vim: Edit Text at the Speed of Thought
Drew Neil
The Pragmatic Bookshelf, 2012. 311 pp.
ISBN 978-1-93435-698-2
Reviewed by Rik Farrow

Elsewhere in the issue, Dave Josephsen refers to the argument of
whether to use vi or Emacs as a religious one. For myself, choos-
ing to use vi was more a pragmatic decision: vi was found on all
of the many systems I was using at the time. I learned vi, and
continued to learn new tricks, until I thought I had mastered vi.

That was 25 years ago. Over the last five years, I started noticing
differences in how vi worked—for example, if I happened to pass
a directory instead of a file to open. I thought the new behavior
was better, displaying the directory’s contents and then getting
to choose the file I wanted to edit. Then I noticed other things,
such as previously unmapped keys were now mapped, and
strange things, like the screen was split.

What had happened was that vi, written by Bill Joy in the early
‘80s, had been replaced by vim. And when I noticed this book, I
decided it was time to learn about the new tool.

I got away without knowing about vim for years because it works
pretty much like vi—it’s just that vim does a whole lot more.
Practical Vim is organized as a series of “Tips” within each chap-
ter, but starts out with several chapters of very basic vim. The
author encourages more advanced users (ahem) to skip around,
which I immediately started doing. I learned that vim has a
special register that allows me to solve simple equations and
insert the results inline. I found out how to intentionally split
the screen, and what visual block is all about.

The book works well: the instructions are clear, examples easy
to follow, and everything I tried worked. My only complaint is
about vim, not the book. Now I have another set of keystrokes to
memorize so I can learn all the new features. Practical Vim does
not teach you about scripting, another facet of vim, although it
does use scripting in several examples. There is much to learn.

If you have been a vi user, and have noticed something different,
I encourage you to learn about vim. Or buy this book, as it can
make the experience less painful and more fun.

Thanks to our USENIX and LISA Corporate Supporters
USENIX Patrons

Google

Infosys

Microsoft Research

NetApp

VMware

USENIX Benefactors

EMC

Hewlett-Packard

Linux Journal

Linux Pro Magazine

Oracle

USENIX Partners

Meraki

USENIX and LISA Partners

Cambridge Computer

Google

