
46    F eb rua ry 20 14  Vo l . 3 9, N o. 1 	 www.usenix.org

Columns

iVoyeur
Counters

D a v e J o s e p h s e n

My friend Chris counts people. Well, sometimes he counts people,
and although I can tell you where, I couldn’t tell you why. I only
found out by accident, and the act of discovery felt enough like an

unwelcome intrusion that asking why seemed out of the question.

It happened when a group of us went over to his apartment at lunch. He lived across the street
from the building in which we all worked at the time, and it wasn’t uncommon for us to grab
a sandwich or whatever, and head over to his apartment to play some “DOA3” or “God Hand.”
On this particular day, Chris had left on his kitchen table a small metallic four-digit “hand
tally,” like the ones you see in the hands of parking attendants and people who take your
ticket as you come through the door.

My friend Kelly, who, like myself, has a penchant for sometimes accidentally asking embar-
rassing questions, picked it up and, glancing at the number (37 IIRC), asked what it was.
Chris replied, in so many words, that the number represented people that he talked to at a
party the night before, and didn’t appear eager to discuss it much further.

We said nothing more about it. But I often wish that Kelly had had the lack of decorum to
pursue it, or that I had, because I don’t know about you, but thousands of questions occur
to me. Important, nagging questions that, having gone unanswered, keep this story in my
memory year after year, even though nearly a decade has passed. When I die, I will die with
these questions somewhere in what remains of my dementia-riddled mind. Was this a recur-
ring polling interval, or was it a non-periodic metric? Was he storing it as an incrementing
counter that rolled over at 9999+1, or was he manually rolling it over daily and storing it as a
gauge? Had he plotted the distribution? Was it uniform? What was the mean and sigma? Had
he done any predictive analysis?

I was tempted to begin this article with something like, “Counters are a foundational concept
in systems monitoring,” although it would have been beyond condescending of me. You don’t
need me to tell you that counting things is a foundational concept. Counters are about as
simple a concept as exists. Yet, in the context of this story about Chris, it strikes me that
counter metrics are also sort of subtle and sometimes misunderstood.

Indeed the questions I have about Chris’s quantification fetish that I cannot answer
have mostly to do with the implementation details of the counter data. I can, for example,
imagine myriad reasons why he might want to count the people he talks to—that he has a
personal goal to talk to 10k unique people, or is trying to improve his interpersonal skills
by repetition. I’ve often fallen down this or that “life hacking” rabbit hole and can easily
relate. But the details surrounding how his counter metric is stored imply real and inter-
esting systems constraints.

Dave Josephsen is
the sometime book-
authoring developer
evangelist at Librato.
com. His continuing

mission: to help engineers worldwide close the
feedback loop. dave-usenix@skeptech.org

www.usenix.org	   F eb rua ry 20 14  Vo l . 3 9, N o. 1  47

COLUMNS
iVoyeur

For example, Chris, like me, cut his teeth on MRTG and RRD-
tool, so for him to store his metric as type “counter” in a round-
robin database would be natural. RRDtool’s concept of a counter
grew out of SNMP counters. Network devices, such as switches
and routers, store metrics, such as byte-counters, on each inter-
face using a 32-bit number. RRDtool’s counter type is intended
to store the current value polled from a router byte-counter
directly and automatically compute and display the derivative,
or rate of change, of that value. When you say “store it as a coun-
ter” to Ops people, this is the notion you have conjured in their
minds—that of an ever-increasing 32- or 64-bit value, which, if
plotted directly, would always look like a diagonal line increasing
from left to right.

In the mind of a programmer, a counter is also usually a 32-bit
value, although a good programmer would probably disown that,
muttering something about it being architecture dependent, and
something else about uint32. The programmer’s counter usually
has a short name (like “c”) and the programmer usually has
handy incrementors and decrementors (like “++” and “--”) built
into his or her favored language that enable simple and terse
manipulation of the counter value.

If my friend Chris tired of having a manual clicky thing in his
pocket that he had to interact with, and then later, manually copy
the value from, we can imagine that he might replace his hand-
tally with something like an Arduino board that could uniquely
identify the voices of the people he talked to. If he did this, inter-
nally, he would probably use a 32-bit integer with a small name
(like “p”) in his code to track his “people” metric. This would be
good, but he would still want to store the metric externally, so
he could see graphs without manually copying values from the
device. The Arduino could use WiFi (or whatever) to broadcast
his metric every five or ten minutes, which would enable him to
see not only how many people he spoke to but also when he did a
lot of talking over the course of the evening.

He could store the value externally in Graphite [1], a metrics
collection system with a super-simple API. Some monitoring
systems, such as Graphite, only store data as a value that may
increase or decrease (a “gauge,” in RRDtool parlance). If you
want a useful graph of a counter stored as a gauge in Graphite,
you wrap your counter in the “derive()” function when you graph
it. So if Chris wants to store his metric in Graphite, he’ll need to
write his code such that the total value of p is sent to Graphite
every so often, like RRDtool with the SNMP byte-counters.

Incrementor operators such as “++” are ubiquitous, easy to
understand, and make a lot of sense in contexts like counting
people. If, in Chris’s code, instead of sending the value of p every
time, it would be nice if he could create some sort of object, or
type, which he could simply increment each time he had a new
conversation with a unique person. Graphite’s socket API is nice,

but because it doesn’t have a counter type at all, it doesn’t provide
a simple means for Chris to, in his code, say “p++”. Chris would
either have to track the current total value himself and then
write a wrapper for himself to increment and push it, or he’d have
to query Graphite for the current total value, increment it, and
then push it back.

Either way, Chris has scalability details to consider. If he tried to
track the total value himself, he would limit concurrency. If, for
example, he eventually attempted to replace his Arduino device
with a series of room-based devices, each of which reported
more generic stats on all conversations in their respective room,
each device would have a different total value of p for Chris, and
would therefore step on each other when they tried to report up
to Graphite. If Chris tried to query the current value for p for
every measurement, he’d have a race condition, limit the polling
interval, and introduce a dependency between metrics collection
and storage, which is an unwise design choice.

Instead of communicating values, if Chris’s code could send
an Incrementor signal to the external storage system would be
ideal. That way, he wouldn’t need to store or acquire the current
value of p to increment it, and his code could be distributed and
concurrent. Scalability concerns would be pushed up from the
metrics collection tier to the metrics storage tier, and the number
of bits on the wire would be smaller and more predictable. This,
in a nutshell, is why Statsd [2] was created. Statsd was designed
to be a middle layer between Graphite and your metrics sources.
It can listen for Graphite protocol values as well as special pur-
pose instructions, such as incrementor signals. Statsd can also
“roll up” multiple broadcasts from metrics collectors into single
updates, taking some of the strain off Graphite itself.

In case I haven’t made the subject of counters convoluted
enough, to run Statsd on every server, or centrally, or both is
common practice. We can imagine, for example, Chris’s multi-
room conversation-counter system, tracking per-room metrics,
in which case each room would have its own value of p that
would be tracked as a separate metric. If we wanted a total value,
we could sum() them at visualization time in Graphite. Alterna-
tively, we could run Statsd at a central location, and point every
room at it. We could still track per-room metrics this way, as well
as allowing every server to increment a global total value coun-
ter. Finally, we could run Statsd on every server, which could
give us a high localized polling interval, and then point each
server Statsd instance at a centralized Statsd, to roll everything
up and maintain a global counter.

In my opinion, the programmatic notion of a counter as “a
value we use to count things,” is more intuitive than RRDtool’s
“ever-increasing, sometimes rolling-over, value we assume
you’re going to want to plot the derivative of at some point.” More
importantly, the two definitions are not compatible with one

48    F eb rua ry 20 14  Vo l . 3 9, N o. 1 	 www.usenix.org

Columns
iVoyeur

another in a data-storage sense. We cannot store the former in a
box designed for the latter.

For example, Chris might eventually run into some situations
in which he wants to decrement p, especially if every conversa-
tion is automatically being counted for him. “Conversations”
beginning “Where is the bathroom?” and “Do you have change
for a $20?” might not seem to him to be valid data, and although
there’s no reason he couldn’t decrement p using Graphite and
Statsd, he’d be stuck kludging around with RRDtool. Counters
like those in Coda Hale’s Metrics [3] library are often used to
track things such as cache entities and live threads, and for these
purposes decrementors are an absolute necessity. In a more
general sense, this implies that when we undertake to decide on
a metrics storage system, we can no longer assume we already
fully understand the primitives based on their names. We need
to be sure we know what is meant when someone says “counter.”

In the past few years, the field has grown laden with metrics
collection systems that each have a thing called a “counter,” the
meaning of which is often expected to be intuitive (because, duh,
what could be more obvious than a counter). But heads up. As I
hope Chris and I have illustrated, counters are not simple, and
they’re only sometimes used for counting things.

Take it easy.

References
[1] Graphite: http://graphite.wikidot.com/.

[2] Statsd: https://github.com/etsy/statsd/.

[3] Coda Hale’s Metrics: http://metrics.codahale.com/.

HotCloud ’14:
6th USENIX Workshop on

Hot Topics in Cloud Computing
Tuesday–Wednesday, June 17–18

www.usenix.org/hotcloud14

HotStorage ’14
6th USENIX Workshop on Hot Topics

in Storage and File Systems
Tuesday–Wednesday, June 17–18

www.usenix.org/hotstorage14

WiAC ’14
2014 USENIX Women in

Advanced Computing Summit
Wednesday, June 18

www.usenix.org/wiac14

ICAC ’14
11th International Conference on

Autonomic Computing
Wednesday–Friday, June 18–20

www.usenix.org/icac14

USENIX ATC ’14
2014 USENIX Annual
Technical Conference

Thursday–Friday, June 19–20
www.usenix.org/atc14

UCMS ’14
2014: USENIX Configuration
Management Summit
Thursday, June 19
www.usenix.org/ucms14

URES ’14
2014 USENIX Release Engineering
Summit
Friday, June 20
www.usenix.org/ures14

More events will be announced soon!

Save the Date!

2014 USENIX Federated Conferences Week
June 17–20, 2014 • Philadelphia, PA

www.usenix.org/fcw14

