®
® o
THE MAGAZINE OF USENIX & SAGE
, . June 2003 e volume 28 e number 3

inside:

PROGRAMMING
Ci# Types
by Glen McCluskey

USENIX & SAGE

The Advanced Computing Systems Association &
The System Administrators Guild



C

by Glen

types

Glen McCluskey is a
consultant with 20
years of experience
and has focused on
programming lan-
guages since 1988.
He specializes in Java
and C++ perfor-
mance, testing, and
technical documen-
tation areas.

glenm@glenmccl.com

In our examination thus far of the C# language, we've
looked at the overall architecture and also discussed
some basics of compiling and executing programs. In
this column we'll start to consider the various types that
C# offers.

C# is an object-oriented language, and its type system thus cen-
ters around system-provided and user-defined classes, classes
that represent an abstraction of some sort (such as a calendar
date or a geometric X,Y point). All the details of how classes
work cannot be covered in a single column, and we’ll touch on
them only briefly in this initial presentation.

Built-in Types

C# offers a standard set of built-in data types, such as short,
long, and double. These are similar to the corresponding types
in C/C++. They have a standard size; for example, long is 64
bits. Values of the char type hold a single Unicode character (16
bits); an 8-bit unsigned byte type exists as well.

One substantial difference from C is the provision of a decimal
type, in addition to the usual floating-point types float and
double. Floating-point arithmetic does poorly at handling deci-
mal calculations (e.g., payroll deductions), and the decimal type
offers an alternative. Here’s an example of where it matters:

using System;
public class Dec {
public static void Main() {

// add 0.1 to itself twice and compare to 0.3,
/] using the double type

double dbl = 0.1;
if (dbl + dbl + dbl == 0.3)
Console.WriteLine("double is equal');
else
Console.WriteLine("double is unequal);

// the same, but using the decimal type

June 2003 jlogin: LOOKING AT C# TYPES

decimal dec = 0.1m;
if (dec + dec + dec == 0.3m)
Console.WriteLine("decimal is equal");
else
Console.WriteLine("decimal is unequal’);

}

Using a double type, 0.1 added to itself three times does not
result in 0.3, due to floating-point representation problems: 0.1
is the sum of an infinite series of negative powers of two
(0.00110011001...) and therefore is not exactly representable in
floating-point format. The decimal type solves this problem
and is useful in areas such as financial calculations. Of course,
it’s a bit slower in execution.

Another difference from C is the string type. Here’s an example:
using System;

public class String {
public static void Main() {
string s = "testing";
Console.WriteLine(s);

}
A rich set of functions for manipulating strings is also available.
Type-Checking and Conversions

C# applies tighter type-checking rules to the use of built-in
types than C and C++. For example, in this code:

using System;

public class Conv {
public static void Main() {
ulong a = Oxffffffff;

uint b;
/b = a;
b = (uint)a;

}

an explicit cast is required to convert the unsigned long value to
unsigned int. Such conversion often represents a programming
mistake, and the programmer is required to specify explicitly
that the conversion is desired (and, presumably, to consider its
implications).

A related example is the use of Boolean expressions:
using System;

public class Bool {
public static void Main() {
int x = 100;

PROGRAMMING

19



20

/i (x) {3
if (x1=0){}

}

C# requires that the controlling expression in an if statement be
of Boolean type, not simply a numeric or pointer type that can
be checked against zero.

Boxing and Unboxing

What is the relation of built-in types like int to class types? In
some languages, there is no connection — the two kinds of types
have nothing in common.

C# approaches things a little differently. An automatic conver-
sion called “boxing” is supplied by the compiler in order to con-
vert a value of a built-in type to a class type. Let’s look at an
example:

using System;
using System.Collections;

public class Box {
public static void Main() {

// box an integer value

int n = 100;
object obj = n;

// unbox it
//n = obj;
n = (int)obj;

// add some integer values to a collection

ArrayList list = new ArrayList();

list.Add(1);

list. Add(2);

list.Add(3);

for (inti=0;i < list.Count; i++)
Console.WriteLine(list[i]);

}

In the first part of the code, an object of the root class Sys-
tem.Object is initialized with an integer value (100). The con-
version involves creating a wrapper object of class type
System.Int32 for the integer value. In other words, an object of
the class System.Int32 is created and initialized with the value
100. Because this data type is part of the class hierarchy with
System.Object as its root, the assignment is valid.

Here’s some intermediate language output that illustrates what
is going on in the first part of the example:

[L_0000: Idc.i4.s 100

IL_0002:
IL_0003:
IL_0004: box
IL_0009: stloc.1
IL_000a: ret

stloc.0
Idloc.0
[mscorlib]System.Int32

The boxing conversion is not without cost, but at the same time
eases programming. In the second part of the example, some
values of a built-in type are added to an ArrayList collection.
The collection requires values of “object” type, so the integers
are boxed automatically before being added to the collection.

The automatic boxing conversion, along with the existence of
wrapper classes such as System.Int32, implies that the distinc-
tion between built-in and class types is blurred to some extent.

Enumerated Types

C# also supports enumerated types, similar to those offered by
C. Here’s some code that defines an enum to represent the col-
ors red, green, and blue:

using System;
enum Color : byte {RED = 1, GREEN = 2, BLUE = 3}

public class Enum {
public static void Main() {
Color ¢ = Color.GREEN,;

/linti=c;
inti = (int)c;

Console.WriteLine(i);

}

The enum base type is byte, an unsigned value 0-255. Enum
types are not interchangeable with integral types; conversion
requires an explicit cast.

Class and Struct Types

The C# concept of a class is similar to that found in the C++
and Java languages. A class defines some data (which objects of
the class will contain) and operations on that data, expressed
through functions (“methods”) of the class. If you’re a C pro-
grammer, a class is a grouping of some data defined in a struct
coupled with some functions that operate on instances of the
struct. Data in objects is generally hidden or private, and acces-
sible only via the methods of the object’s class.

Let’s look at an example, one that uses a class to represent X,Y
points:

Vol. 28, No. 3 jlogin:



using System;

public class PointClass {
private int X, v;

public PointClass(int x, inty) {
this.x = x;
this.y = vy;
1
public int getX() {return x;}
public int getY() {return y;}
}

public struct PointStruct {
private int X, y;

public PointStruct(int x, int y) {
this.x = x;
this.y =vy;

}

public int getX() {return x;}
public int getY() {return y;}
}

public class Struct {
public static void Main() {
PointClass pc = new PointClass(10, 20);
PointStruct ps = new PointStruct(30, 40);

}

The PointClass class defines private data members x and y,
along with a constructor to create new objects (a constructor is
denoted as a method with the same name as the class). There
are also getX and getY accessor methods, to access the x and y
values from a PointClass object.

In the Main method, an object of PointClass is created using the
new operator, and the constructor is called after space is allo-
cated from the heap. C# uses garbage collection, so you don’t
need to worry about explicitly freeing object space when you’re
done with it; garbage collection takes care of this for you auto-
matically.

PointStruct is a class that seems identical to PointClass, except
that it’s defined with a struct keyword instead of a class. What’s
the difference? A struct is a lighter-weight type than a class, with
some restrictions. For example, a struct cannot inherit from
another class or struct.

A really key difference is that a struct is a value type, whereas a
class is a reference type. In the example above, when an object
of PointStruct is allocated via the new operator, it’s allocated
from the stack, not the heap. Here’s some intermediate language
output that shows the difference between the two new calls:

June 2003 jlogin: LOOKING AT C# TYPES

IL_0000: Idc.i4.s 10

[L_0002: Idc.i4.s 20

IL_0004: newobj instance void PointClass::.ctor
IL_0009: stloc.0

IL_000a: Idloca.s V_1

IL_000c: Idc.i4.s 30

[L_000e: Idc.i4.s 40

[L_0010: call instance void PointStruct::.ctor
IL_0015: ret

When struct objects are passed to methods, they are passed by
value, with a copy made of the object. For example, in this code:

using System;

public class A { // class
public int x;

}

public struct B { // struct

public int x;
}

public class Struct2 {
public static void f(A aref, B bref) {
aref.x = 30;
bref.x = 40;
}

public static void Main() {
A aref = new A();

aref.x = 10;
B bref = new BI();
bref.x = 20;
f(aref, bref);

Console.WriteLine("{0} {1}", aref.x, bref.x);

}

the values “30 20” are printed. The object of class A is passed by
reference, whereas the B object is passed by value. Method f can
modify the value of the A object in a way that’s visible outside
of f, because it has a pointer to the object. But f has only a copy
of the B object.

A struct is most useful for types that are very simple. If you're
defining an X,Y point type, for example, it might be worth
using a struct instead of a class.

In future discussions, we’ll get into more detail of how classes
and structs work and look at related concepts such as interfaces
and abstract classes.

PROGRAMMING

21



