
THE MAGAZINE OF USENIX & SAGE
June 2003 • volume 28 • number 3

The Advanced Computing Systems Association & 

The System Administrators Guild

&

inside:
PROGRAMMING

Practical Perl

by Adam Turoff



33June 2003 ;login:

practical perl: 
keeping it simple

PRACTICAL PERL �  

�
  

 
PR

O
G

RA
M

M
IN

G

CPAN modules are a great way to construct a program

by reusing existing components. However, gluing CPAN

modules together is certainly not the only way to write

a Perl program. In some cases, it is both simpler and

easier to write a program without using CPAN modules.

After all, with or without CPAN, Perl is still a great lan-

guage for text hacking, automation, and application

glue.

Building a program using CPAN modules is a great way to start
writing a new program, and a great way to reduce development
time. However, using CPAN modules adds dependencies that
can complicate deployment. Remember that a program will not
run unless all of its required modules are installed. In some
extreme cases your program may run, but it will exhibit buggy
behavior because it uses an older version of a module depen-
dency. Although these issues are not insurmountable, they are
worthy of consideration, especially in situations where a pro-
gram will be installed both widely and often.

Dave Cross’ NMS project (http://nms-cgi.sourceforge.net) is a
perfect example. Dave wanted to write replacement programs
for the ancient, buggy, insecure yet popular scripts found on
Matt’s Script Archive. Dave’s replacement programs are targeted
at unsophisticated users who want to add a stock feature on a
Web site. Many of these users are not Perl programmers, nor do
they wish to learn Perl just to install a silly guest-book script.
The NMS programs use standard Perl features and core mod-
ules that are distributed with Perl, and have no dependencies on
any modules found on CPAN. This makes it easy for users to
just drop a file in their cgi-bin directory and get something that
“just works.”

I came across a similar situation recently. I maintain an online
journal (Web log) called “use Perl,” a community Web site for
Perl programmers (my journal can be found at http://use.perl.
org/~ziggy/journal/). I also receive email notifications when my
friends post entries in their journals. I don’t always have time to
read these journals when they are posted, and often a few dozen
will accumulate while I am busy working on a project. So I

wrote a quick little program to download the email notifica-
tions so that I can catch up on my backlog as quickly as possi-
ble.

I use procmail at my ISP to store all email notifications of “use
Perl” journal postings in a separate mailbox. The easiest way for
me to automate viewing a few dozen journal entries at a time is
to download the mailbox file, extract the entry URL in each
message, and load it in a Web browser. This certainly isn’t the
most important program I have ever written, but it does exhibit
two virtues of being a programmer: laziness and impatience.
After all, I do not want to spend hours at a time scanning
through old journal entries. I’d rather read these messages as
quickly as possible and move on to more interesting tasks.

First Attempt: Use CPAN Modules
I wrote my first view-useperl script about two years ago. I think
it took all of 10 minutes to write. The process it automates is
quite simple: Download a mailbox from my ISP, get the first
URL in the body of each message in the mailbox, and display
each URL in turn. I started by looking around CPAN, and I
found Mark Overmeer’s Mail-Box distribution. This distribu-
tion contains the Mail::Box and Mail::Box::Manager modules,
which handle the key task of parsing a mailbox into a series of
messages. I’ve used it before, and it suited my needs for this
quick hack.
The first version of my view-useperl script looked something
like this:

#!/usr/bin/perl -w

use strict;
use Mail::Box::Manager;

## (1) Download the mailbox from the ISP.
my $mbox = "/tmp/useperl.$$";
system("scp $ENV{USEPERL_MAILBOX} $mbox")

and die "Error downloading mailbox.\n";

## (2) Open the temporary mailbox.
my $manager = new Mail::Box::Manager;
my $folder = $manager->open(folder => $mbox);

## (3) Convert the mailbox from a list of messages
## to a list of URLs. (Find the first URL in each message
## body.)
my $i = 0;
my @urls;

while(1) {
my $msg = $folder->message($i++);
last unless $msg;

$msg->body() =~ m/(http:.*?)$/sm;
push(@urls, $1);

}

by Adam Turoff

Adam is a consultant
who specializes in
using Perl to manage
big data. He is a
long-time Perl Mon-
ger, a technical editor
for The Perl Review,
and a frequent pre-
senter at Perl confer-
ences.

ziggy@panix.com

http://nms-cgi.sourceforge.net
http://use.perl


Vol. 28, No. 3 ;login:34

## (4) Close and delete the temporary mailbox.
$folder->close();
unlink($mbox);

## (5) Show the URLs, one at a time.
foreach my $url (@urls) {

print $url;
system “open '$url'";
<>;

}

The main body of this script starts in part (1) by copying the
mailbox from my ISP to a local file. The remote location of the
mailbox containing my use.perl.org notifications is stored in an
environment variable, USEPERL_MAILBOX. I use this tech-
nique to avoid hard-coding sensitive information in my source
code. Because the location is stored in an environment variable,
I can publish the source code without requiring other users to
edit the program text in order to customize it.

The system call may seem counterintuitive at first. That’s
because system is unlike normal Perl primitives, like open, that
return true on success and false on failure. Instead, system
returns a nonzero failure code (true), and a zero value (false) to
indicate success. This is consistent with the behavior of the sys-
tem call in the standard C library. Although it made sense for
Perl to adopt the C-style behavior many years ago when most
Perl programmers had some background in C, the situation is
quite the opposite today. Perl6 will reverse this legacy behavior
so that the standard “open or die” idiom can be used with sys-
tem as well, and do away with the current, counterintuitive
“system and die” usage.

The code in part (2) creates a Mail::Box object to scan through
the messages in the mailbox I just downloaded. The Mail::Box
interface requires that I first create a manager object, and use a
factory method on that object to create a folder object, $folder.

The while loop grabs each email message in the folder, one at a
time, and terminates when there are no more messages to
retrieve. It then locates the first URL in each message body, and
appends that to a list of URLs.

Part (4) is some basic housekeeping code to close the folder
object and delete the local copy of the mail folder.

The real value of this program is found in part (5). Finally, I
have a list of URLs I want to load in my browser. Because
MacOS X is my platform of choice, I use the standard open
command to open each URL. This command will intelligently
open a filename using the appropriate application. In this case,
when I pass a URL to the open command, it will load that Web
page in my preferred Web browser. On another system, I could
write a small program called open that is just smart enough to

take a URL and load it in a Web browser. Alternatively, I could
replace open with a mozilla -remote or similar command.

I usually run this program when a few dozen emails have accu-
mulated in my mailbox. Opening a few dozen browser windows
all at once is a great way to consume a lot of memory, saturate
my network connection, and generally make my computer quite
sluggish. Instead, I ask for a line of input after each Web page is
loaded. This allows me to load URLs quickly, yet only open a
few at a time. The input is irrelevant, so a simple return will
allow the program to continue and load the next URL.

Problems with Dependencies
As I mentioned before, I wrote this script about two years ago.
Since then, my main computer died, I purchased a replacement,
reinstalled an OS on my laptop a few times, and have at least
two Perl installations on each machine I regularly use (both ver-
sion 5.6.x and 5.8.0). From a systems management perspective,
it’s been an eventful few months.

My view-useperl script is always one of the first things I install
in my home directory on a new machine. With all of the shuf-
fling, I’ve come to regret using Mail::Box for this little script.
After all, if it only took 10 minutes to write, why should I need
to spend another few minutes on each new machine to install a
dependency when I use my program on a new machine?
Mail::Box certainly is not a bad module, but this is the only pro-
gram I use that requires it. Eliminating the dependency will
make it easier to copy my script around as I switch machines
(and Perl installations).

Once I came to this realization, I saw it was time to rewrite my
program to not use Mail::Box anymore, and just process the
mailbox files directly.

Second Attempt: No CPAN Modules
Mail messages in a mailbox file start with a line that contains
the word From, a space, an email address, and a date. (This is
why a line in the body of an email message that begins with
“From” usually has a “>” character preceding it.) Mail messages
are also separated by a blank line preceding the From line.

With this information at hand, I decided to rewrite view-
useperl. I can view a mailbox file as a series of email records,
and then use standard Perl operators to convert a mailbox file
into a sequence of relevant URLs.

The email messages I am processing are consistently formatted.
The first URL in each message is the location of the journal
entry I want to view. Also, there are no URLs found in the mes-
sage headers, so I don’t even need to bother splitting the mes-
sage header from the message body. The first URL I encounter



35June 2003 ;login:

�
  

 
PR

O
G

RA
M

M
IN

Gin each message will be the URL I want to view. Subsequent
URLs will appear in each message, and they should be ignored.

Here is the updated view-useperl script that takes advantage of
these observations:

#!/usr/bin/perl -w

use strict;

sub read_mailbox {
my $mbox = shift;

## Read a sequence of messages, 
## delimited by a blank line and 'From'.
local $/ = "\n\nFrom ";

open(my $fh, $mbox);
my @urls = map {m/(http:.*?)$/sm; $1} <$fh>;
close($fh);
unlink $mbox;

return @urls;
}

## (1) Download the mailbox from the ISP.
my $mbox = "/tmp/useperl.$$";
system("scp $ENV{USEPERL_MAILBOX} $mbox")
and die "Error downloading mailbox.\n";

## (2) Read the URLs found in the mailbox.
my @urls = read_mailbox($mbox);

## (3) View each URL in turn.
foreach my $url (@urls) {

print $url;
system "open '$url'";
<>;

}

Not only does this program avoid CPAN modules, but it is
slightly shorter and a little easier to read. Because it does not
have any external dependencies, I can expect it to work wher-
ever I copy it (so long as I define my USEPERL_MAILBOX envi-
ronment variable).

The overall structure of this is unchanged. First, fetch the mail-
box. Next, convert a set of email messages to a list of URLs.
Finally, display the URLs, one at a time. And this sequence of
steps is clearly stated in the main program text. The more com-
plicated process of converting a mailbox into a list of URLs is
now handled by an appropriately named sub, read_mailbox.
This sub eliminates the need to create Mail::Box objects, yet it
performs the same task: converting a mailbox into a set of email
messages, extracting the first URL from each message, and
returning a list of URLs.

The first thing read_mailbox does is modify the input record
separator, stored in the $/ special variable. This variable con-

tains a new-line character by default, and that is why file input
operations generally occur one line at a time. Because a mailbox
is nothing more than a concatenation of email messages, I can
specify a sequence of characters found between email messages
as a record separator. When I read the mailbox file in list con-
text, I receive a meaningful list of email messages, not a mean-
ingless list of lines in a file.

The $/ variable is used globally within a Perl program. Chang-
ing its value is bad style, unless changes are localized to a spe-
cific scope. Here, the statement local $/ = "\n\nFrom " modifies
the value of the input record separator within the read_mailbox
sub and any subs that it calls. When read_mailbox exits, the pre-
vious value of $/ is restored. This is important, because the con-
sole input operation at the end of the program expects the
record separator to be a new line, not "\n\nFrom ".

Now that $/ has been modified appropriately, reading messages
is a breeze. First, I open the local copy of the mailbox. Next, I
read the mailbox in as a list of messages (my @urls = ....
&lt;$fh&gt;;). But the messages themselves aren’t very mean-
ingful in this particular program. In fact, each message is just a
stream of meaningless text, followed by a URL, followed by
more meaningless text. The map operation transforms the list
of email messages read in from &lt;$fh&gt;; and replaces each
chunk of text with the first URL in that chunk. These URLs are
then gathered together into the list @urls.

In effect, a few lines of module initialization and method calls
in the original program are replaced with one line to reset the
value of $/ and one line to read and convert a mailbox into a list
of URLs. This is the power of Perl.

Observations
CPAN is certainly the best thing that has ever happened to Perl.
However, Perl without CPAN is not too shabby. Sometimes, the
easiest or the best solution to a problem is to avoid CPAN. In
the example of my view-useperl program, the before and after
versions are equally good. However, the modified version has a
very attractive property – it does not require me to install
Mail::Box on each new computer I use.

The reason why I chose to avoid Mail::Box has nothing to do
with the quality of that module, but just reflects the desire to
remove an external dependency for view-useperl. If my little
program were doing something more complicated, like deleting
some messages in a mailbox file, or selecting messages based on
header characteristics, then I certainly would have kept using it.
Instead, I chose to rewrite this program as a common needle-
in-a-haystack type of solution. The fact that the data file was a
mailbox is largely irrelevant here.

PRACTICAL PERL �  



Vol. 28, No. 3 ;login:36

There are other circumstances where avoiding CPAN modules
is simply unwise. When using a relational database, there’s no
good reason to avoid the DBI family of modules. Similarly,
there’s no reason to start with raw socket programming to fetch
Web pages when the LWP library has been doing a great job for
many years. And the list goes on and on.

Conclusion
Whether you are writing a quick hack or a program of signifi-
cant size, there are many very good reasons to start with CPAN
modules to make your job easier. However, there are also some
circumstances where there are benefits to avoiding CPAN mod-
ules. Remember that both options are available to you. Choose
wisely.

USENIX and SAGE Need You 
People often ask how they can contribute. Here is a list of tasks for which we hope to find 
volunteers.

The SAGEwire and SAGEweb staff are seeking:

� Interview candidates
� Short article contributors (see http://sagewire.sage.org)
� White paper contributors for topics like these:

Back-ups Emerging technology Privacy
Career development User education/training Product round-ups
Certification Ethics SAGEwire
Consulting Great new products Scaling
Culture Group tools Scripting
Databases Networking Security implementation
Displays New challenges Standards
Email Performance analysis Storage
Education Politics and the sysadmin Tools, system

� Local user groups: If you have a local user group affiliated (or wishing to affiliate) with SAGE, please email the particulars to
kolstad@sage.org so they can be posted on the Web site.

;login: always needs conference summarizers for USENIX conferences. Contact Alain Hénon, ah@usenix.org, if you’d like to help.

http://sagewire.sage.org

