
THE MAGAZINE OF USENIX & SAGE
April 2003 • volume 28 • number 2

The Advanced Computing Systems Association &

The System Administrators Guild

&

inside:
SECURITY

Chuvakin: Ups and Downs of UNIX/Linux Host-Based Security

Solutions

57April 2003 ;login:

�
SE

C
U

RI
TY

An exciting area of UNIX, security presents many challenges not resolved

by a single technology. Host-based security solutions occupy a crucial place

between network-based defenses (e.g., firewalls and network intrusion

detection) and good administrative practices (e.g., securely configured and

hardened hosts). Many of the SANS Top 20 Vulnerabilities can be success-

fully mitigated using host-based security. For example, buffer overflows in

Sendmail, BIND, and RPC services can be secured using kernel-call tracing,

and the consequences of most of the other attacks from the list can be dis-

covered using file-system integrity checking.

Host-Based Security Technologies
This paper deals with UNIX host-based intrusion detection and prevention. We will
take a look at UNIX host security solutions, with the focus on their inadequacies and
ways to overcome them (whenever possible). Currently, many different technologies –
integrity checking, kernel- and system-call tracing, log analysis, local-host NIDS – are
lumped together into host-based security.

Integrity-checking software examples include Tripwire, AIDE, and a large number of
lesser-known scripts and applications. Linux RPM also provides some integrity-check-
ing functionality (“rpm -V” mode). The common feature of integrity checkers is that
they keep a record of file properties such as modification or change times, location on
disk, permissions, owner, and other attributes. They also compute and keep crypto-
graphic checksums of the file contents. The simplest application of this kind would be
a shell script similar to the following:

#!/bin/sh
#primitive integrity checker

ls -laRi / >/home/files
cd /usr/bin
ls | xargs -i md5sum {} > /home/sums

diff /home/files /home/files.old
diff /home/sums /home/sums.old

HIDS such as Entercept operate on a kernel level. While high-security kernel patches
(such as Linux LIDS and Solaris Pitbull) also work in kernel space, they are more accu-
rately described as “prevention” technology as opposed to “detection,” since they
restrict the actions of users and applications based on certain pre-defined access con-
trol lists. Some Linux kernel modules (such as StMichael and StJude – http://sourceforge.
net/projects/stjude) occupy an intermediate space: They can detect malicious kernel mod-
ules and can also prevent some of the damage caused by them.

The main distinction to be found in UNIX system log analysis tools is between real-
time tools (that read log records as soon as they are produced, i.e., written to disk) and

ups and downs of
UNIX/Linux
host-based security
solutions

by Anton
Chuvakin

Anton Chuvakin is a
senior security ana-
lyst with a major
information security
company. His areas
of infosec expertise
include intrusion
detection, UNIX
security, forensics,
and honeypots. In his
spare time he main-
tains his security por-
tal at http://www.
info-secure.org.

anton@netForensics.com

HOST-BASED SECURITY SOLUTIONS �

http://sourceforge

Vol. 28, No. 2 ;login:

cron-based tools (that run periodically and process accumulated log records). Some
commercial HIDS (such as Dragon Squire) also have capabilities to analyze system
logs. In addition, there are many freeware tools that can be used to detect intrusions
using log files. Swatch is the best-known real-time tool, while logcheck, logwatch, and
many others provide periodic log assessment.

Network IDSes that are used to monitor traffic only destined for a specific host (also
sometimes called hybrid IDS) will not be considered here since they are much closer to
network intrusion detection systems than to host security. However, if such a “hybrid”
IDS analyzes network traffic after processing by the host protocol stack (e.g., at the
application level), it can do many things that normal network IDS cannot do, such as
analyze encrypted traffic (SSH, SSL, IPSec VPN, etc.). In addition, many of the inser-
tion and evasion attacks described in the Ptacek and Newsham paper (“Insertion, Eva-
sion, and Denial of Service: Eluding Network Intrusion Detection”) will not work
against such IDS, since raw traffic processing is done by the target system stack and
not by some other host (with its own network stack peculiarities) sniffing the traffic.

HIDS Challenges
What are some of the advantages of host-based intrusion detection products? The key
difference is that while network IDS detects potential attacks (which are being sent to
the target), host IDS detects attacks that succeeded, thus having a lower false positive
rate. Although some might say that network IDS is thus more “proactive,” host IDS is
effective in the switched, encrypted, and high-traffic environments that present certain
difficulties to NIDS.

Now it’s time to turn to HIDS challenges.

First, at least some of the host IDS components are deployed on an attacked host. If
the attack succeeds, the intruder will usually have “root” access to the box and might
be able to disable or deceive the IDS. The usual countermeasures are “hide” (prevent
an intruder from seeing the IDS and continue operation), “run” (sound an alarm any-
way before being discovered), and “fight back” (attempt to thwart the attacker’s activ-
ity).

Second, even without total access to the host and without an ability to damage the IDS
itself, the intruder can influence the reporting channel. This is because a host-based
system must communicate the alerts to the outside parties: email, syslog, SNMP, or
other network connection are typically used. Some of these protocols can be disrupted
even without having complete access to a host.

Third, host IDS usually presents a bigger administrative and management challenge
than network intrusion detection. While it is sufficient to have one NIDS per network
segment, HIDS should be installed on every monitored host. That complicates both
system configuration and report/alert collection. In addition, having host IDS systems
of different classes and from different vendors usually complicates alert correlation
and aggregation. Security Information Management solutions can ease the load of
analyzing host intrusion detection output.

Fourth, some of the HIDS classes will incur a performance penalty on the protected
host. Some vendors report that their kernel-level HIDS incur an extra 5–10% CPU
load. Integrity checking is extremely CPU and I/O heavy (if only during the periodic
check) due to the underlying cryptographic algorithms.

58

Host IDS usually presents a

bigger administrative and

management challenge than

network intrusion detection.

It should be noted from our honeypot experience, that few of the less competent
attackers will bother to check for the presence of the host IDS and/or use any of the
above methods to disable it. While typical automated attack kits (autorooter + rootkit)
do disable standard UNIX system logging and (sometimes) process accounting, they
will not attempt to foil the operation of the integrity checker. One possible explana-
tion is that people who fall victim to such an unsophisticated attack are usually not the
users of system integrity checkers. However, in a recent case, the attacker did take steps
that accidentally disabled the integrity checking: He simply “rm -rf /”ed the whole
machine.

ATTACKS AGAINST INTEGRITY CHECKERS
Now let’s turn to integrity checkers (IC) and outline some attacks against them
together with countermeasures. As was outlined above, the typical IC program com-
putes the checksum and collects information about files (“initialize mode”). Then the
program will periodically check for changes (using the “check mode”). In addition, the
system admin can update the file signature after reconfiguring the system (“update
mode”). Depending on the implementation of the IC program, each of those modes
can be attacked.

ATTACKS AGAINST “CHECK MODE”

TROJAN BINARY

If an IC program uses a standard system binary to check the integrity (e.g., RPM’s
/usr/bin/md5sum), one can replace the binary to report the right checksum for certain
files. Using this simple method, the intruder can hide a small number of files from
checksumming, but not from other checks (such as location). For the Linux RPM-
based system case, replacing the RPM binary will work just as well.

COUNTERMEASURES

This attack is only provided as an example, since most IC programs use much more
than just a checksum and often implement their own MD5 algorithm.

KERNEL-LEVEL MODULE (LINUX, SOLARIS, *BSD)

An attacker can deploy a malicious loadable kernel module (LKM) to remap the sys-
tem calls. As a result the open() call to open a certain file for checking will be redirected
to another target. Thus the original file moved to a different location by an attacker
will be checksummed. Or, one can leave the open() call to open the original file left in
place, but instead redirect the execve() to run the malicious program stored elsewhere
(the approach used by twhack.c sample code in the “Bypassing Integrity Checking”
article in Phrack #51). In addition, remapping some system library (libc) calls can
accomplish the same task. The malicious system libraries for Linux and Solaris were
observed in the recent system breaches.

COUNTERMEASURES

Implementing more checks will require the attacker to remap more and more system
calls (which is a non-trivial programming challenge).

Example: Adore v.0.42 vs. AIDE and Tripwire

Adore LKM is a kernel-level backdoor for Linux and FreeBSD, featuring file, process,
and connection hiding. Adore remaps fork(), write(), open(), stat() (=get file informa-
tion), close(), clone() (=like fork()), kill(), mkdir(), and getdents() (=get directory entries)

59April 2003 ;login:

�
SE

C
U

RI
TY

HOST-BASED SECURITY SOLUTIONS �

Vol. 28, No. 2 ;login:

system calls. By default, if you know the filename and location of a file, you will be able
to look at it, but it will not show in the directory.

AIDE uses open() to query the files as shown in the above call trace excerpt (obtained
by “ltrace -S -f -r -C -s 1000 -o aide-trace aide –check”):

22015 0.000249 SYS_open("/etc/security", 67584, 027777753350) = 5
22015 0.000238 SYS_open("/etc/smrsh", 67584, 027777753350) = 5
22015 0.000241 SYS_open("/etc/locale", 67584, 027777753350) = 5

Thus, if Adore is configured to hide the presence of a file, AIDE check will not report
on the file. On the other hand, Tripwire will still catch the attacker, because it uses
read() in its integrity checking after doing an open() based on its own records (and not
the getdents() output which is also remapped):

22020 0.000075 SYS_read(3, "\177ELF\001\001\001", 1024) = 1024
22020 0.000075 SYS_read(3, "\177ELF\001\001\001", 1024) = 1024

It should be noted that by remapping more calls, even this can probably be circum-
vented.

FAKED REPORT

The attacker might be able to break the email sending functionality and then manually
send a faked “All OK” report, modeled after the original report. Admittedly, this attack
relies on the intruder’s ability to prevent the communication between integrity check-
ing and the reporting station. However, it might require fewer privileges than the full-
blown attack, such as “mail” group privileges vs. those of a “root” user. An even more
malicious variant of this attack involves replacing the integrity checker binary with an
“OK report generator” program, which sends the report to the sysadmin at specified
intervals. This involves having root access, but can present a more permanent solution
immune to any of the system changes.

If a different networked channel is utilized, it can also be attacked. Consider that hav-
ing complete control of the target machine, the attacker might initiate any connection
(even encrypted) or respond to any connection from an IDS management console. It
should be noted that attacks of this kind have not been observed “in the wild.”

COUNTERMEASURES

Use of secure channels for reporting will stop this attack. Signed email will be consid-
ered secure only if someone actually checks the signatures on the reports. Otherwise,
faking “signed” reports is just as easy as faking unsigned reports.

ATTACK BETWEEN CHECKS

While it sounds trivial, if an attacker manages to complete his activities between peri-
odic checks and then restore the system to its original state, the IC program will not
report an intrusion. It is impractical to expect hourly integrity checks for most envi-
ronments (and that would cause heavy CPU utilization for cryptographic checksum-
ming). However, if the original file is replaced, it will likely not be stored in the same
disk location and the crime may be discovered.

COUNTERMEASURES

Daemon integrity checkers (such as the somewhat obscure “Samhain,” available at
http://www.la-samhna.de/samhain/) do exist. Samhain is an impressive tool that boasts
powerful defenses such as an encrypted and compressed executable binary, cryptogra-

60

http://www.la-samhna.de/samhain/

phy support, steganographically shielded configuration files (can be merged with
innocent GIF or JPEG images), a deceptive command line, and its own kernel-level
hiding kit. These are in addition to secure reporting or information hiding in case the
reporting channel is cut off.

As a side note, while some of the crypto-protocols used for integrity checking (such as
MD5) were found to have collisions (i.e., different files having the same MD5 check-
sum), their impact on the security of real-world systems is minor, since it is likely not
the weakest link for the typical IC deployment scenario. Still, better integrity checkers,
such as Tripwire, use several different algorithms to eliminate this possibility.

ATTACKS AGAINST “UPDATE MODE”

For simple integrity checking programs, attackers will be able to run the “update
mode” after modifying the system. Similarly, the attacker can modify the signature
database directly. It will work only if the database is stored on the same system that is
being checked (not a good idea).

COUNTERMEASURES

Update mode should require a password, and the database should be encrypted (done
by some commercial integrity checkers) and, ideally, stored off-site on read-only
media (in-depth defense). That will also help to prevent some insider and physical
attacks.

ATTACKS AGAINST “INITIALIZE MODE”

The evident attack is that if the system is already trojaned, the initialize mode will cre-
ate a set of signatures that establish the “compromised baseline.” The deployed trojans
might also capture the password used for the database.

COUNTERMEASURES

Run the integrity checker right after installation and before connecting to the
untrusted network. After creating the database, copy it and store it away from the pro-
tected computer.

Now let’s consider kernel-level solutions. We will briefly look at Linux StMichael load-
able kernel module (LKM), designed to alert on the presence of malicious kernel mod-
ules (such as Adore). The module is also able to perform integrity checks on some of
the data structures inside the kernel and to detect tampering with various kernel calls.
StMichael also conceals itself (using the same tricks as adversaries such as Adore or
knark).

For example, if StMichael is loaded and some other kernel module attempts to load in
hidden mode and remap system calls, the malicious module will be revealed and
(optionally) the changes to a kernel call table will be reversed with the log message:

Apr 24 18:32:13 anton kernel: 0(STMICHAEL)
:Kernel Structures Modified. Attempting to Restore.

In case the rootkit was loaded before StMichael, the module might be able to perform
detection as well:

Apr 24 18:28:59 anton kernel: (STMICHAEL)
Possible LKM Rootkit Detected during Load.

61April 2003 ;login:

�
SE

C
U

RI
TY

HOST-BASED SECURITY SOLUTIONS �

Vol. 28, No. 2 ;login:

LOG DELETION/MODIFICATION
Now we are ready to briefly discuss log analyzers. Log analyzers are relatively easy to
foil. Most attackers disable system logging and/or wipe system logs and process
accounting records. Once root access is achieved, deleting or modifying system logs is
easy. Numerous tools (e.g., clean, from THC toolkit, and others) exist to cleanly delete,
log, and audit records from text and binary logs. Modern Linux/Solaris rootkits
include such tools, and they are automatically activated upon rootkit installation, eras-
ing all traces of log evidence. Now, if remote logging is enabled, the typical rootkit
might alert the owner about the fact, but there is nothing it can do about it if the
incriminating log messages were already shot across the network over UDP.

COUNTERMEASURES

Remote logging is the most commonly used and reliable measure against log tamper-
ing. Using a secure log server or a serial connection to drop off the logs is easy to
implement and adds a lot to security.

Cryptographically signed system logs (while they sound attractive) do not measure up
to a tried-and-true remote logging. However, it is well known that standard UNIX log
transport uses the unreliable UDP protocol. Tools exist to flood the log server with
messages and cause it to overflow, crash, or stop receiving messages. In addition, faked
data injection can present another risk for some environments. Log processing and
correlation engines can be made to reach the wrong conclusion if their correlation
logic is known to the attacker. For example, sending faked messages seemingly from
the FTP daemon might lead the log analysis program to believe that an FTP session
has ended, while in fact the message was crafted by the attacker.

Moreover, a bug in a log monitoring program can lead to a compromise. A recent criti-
cal bug in LogWatch enabled attackers to gain local “root” privileges simply by crafting
a simple shell script, which abuses temporary files created by LogWatch. More details
on the exploit are available at http://www.securiteam.com/exploits/5OP0S2A6KI.html.

The obvious conclusion is that to prevent this and other vulnerabilities, log analysis
IDS should be run on highly secured log aggregation servers and not on all production
machines.

Conclusion
UNIX host security, while somewhat vaguely defined, contributes a lot to maintaining
a secure computing environment. This paper introduced some of the issues that
should be considered before the deployment of host-based intrusion detection. Let us
also note that effective centralized reporting and audit trail analysis will significantly
increase the value of host-based intrusion detection. It is crucial to have a central point
for the HIDS to report to.

Another promising aspect of host security is application security. Ideally, host IDS
should be able to understand the audit trails produced not only by system resources,
but also by applications. In this case, a more comprehensive picture of security can be
achieved.

62

Cryptographically signed

system logs (while they sound

attractive) do not measure up

to a tried-and-true remote

logging.

http://www.securiteam.com/exploits/5OP0S2A6KI.html

