
16	 ; LO G I N : VO L . 3 4, N O. 6

J e r e m i a h G r o s s m a n

top 10 Web hacking
techniques: “what’s
possible, not probable”

Jeremiah Grossman, founder and CTO of
WhiteHat Security, is a world-renowned Web
security expert. A co-founder of the Web
Application Security Consortium (WASC),
he was named to InfoWorld’s Top 25 CTOs in
2007 and is often quoted in major publica-
tions such as SC Magazine, Forbes, and USA
Today. He has authored dozens of articles
and white papers, is credited with the
discovery of many cutting-edge attack and
defensive techniques, and is a co-author of
XSS Attacks: Cross Site Scripting Exploits and
Defense. Grossman is also an influential blog-
ger who offers insight and encourages open
dialogue regarding research and vulnerabil-
ity trends. Prior to WhiteHat, Grossman was
an information security officer at Yahoo!,
responsible for performing security reviews
on the company’s hundreds of Web sites.

jeremiah@whitehatsec.com

N e w at ta c k t e c h n i q u e s p r o v i d e
keen insights into the state of the security
of the Web. Web client attack techniques
impact online businesses, reveal what may
become the next popular exploit technique,
and may affect anyone who uses a Web
browser. In this article, I cover the top 10
Web hacking techniques, a selection chosen
by a panel of security experts from a field
of 70 candidates [1].

Sharing technical details of these hacking tech-
niques isn’t meant to give malicious hackers a set
of instructions, but to level the playing field for
the good guys. Without this information, defend-
ers would be unfairly handicapped against a de-
termined criminal element who targets the Web as
their primary attack vector. Notification of vendors
by researchers also provides vendors with a chance
to patch their software before it can be exploited.

It is unclear which of these, if any, will become a
widely used method of attack. What we do know
is that some have already been used against us.
The following hacking techniques were ranked by
a panel of four widely recognized security experts
(Rich Mogull, Chris Hoff, H.D. Moore, and Jeff
Forristal) based on their novelty, impact, and per-
vasiveness. With that I give you the Top 10 Web
Hacking Techniques of 2008!

1. 	GIFAR by Billy Rios, Nathan McFeters,
	R ob Carter, and John Heasman [2]

A GIFAR is the concatenation of a GIF image and
Java Archive (JAR) containing a potentially mali-
cious Java Applet. Many Web sites take ownership
of user-supplied content (e.g., image uploads) after
parsing the bytestream beginning to end and ig-
noring trailing “garbage” data. In the case of GIFAR
the trailing garbage data is a compressed Java Ap-
plet, a JAR, which is essentially a zip file parsed
bottom up. When Web sites take ownership of a
GIFAR because it “looks” like a GIF, the attached
Java archive may execute arbitrary applet code in
the victim’s browser under the context of the do-
main from where it was loaded. This results in a
same-origin policy violation, similar in scope to
that of a persistent cross-scripting vulnerability.
Furthermore, the GIF portion of GIFAR can be
substituted for any file type the Web site will ac-
cept and parse in a top-down fashion (i.e., JPG,
DOC, MP3, etc.).

; LO G I N : D ecem b e r 20 0 9	top te n We b h acking tech ni qu es : “ wh at ’s po ssi b le , not pro ba b le”	 17

2. 	Breaking Google Gears’ Cross-Origin Communication Model
	 by Yair Amit [3]

Google Gears is a browser extension that allows developers to create rich
and responsive Web applications. Of the many available features, Google
Gears offers developers cross-origin communication capabilities, making
it much easier to implement mash-ups, for example. Under some circum-
stances the cross-origin communication security model of Google Gears may
be bypassed by an attack that inserts malicious code. If an attacker can up-
load arbitrary “worker” code (the JavaScript code that can access Gears ca-
pabilities) to target a Web site, the attacker can issue malicious commands
under that domain. This worker code is likely to pass input security con-
trols, as it lacks suspicious tokens such as <script> tags.

3. 	Safari Carpet Bomb by Nitesh Dhanjani [4]

The Safari Carpet Bomb attack allows a malicious Web site to litter the user’s
desktop on Microsoft Windows or the user’s “Downloads” directory on OS
X with arbitrary files or malware. Unless patched, when the Safari browser
is served a file with a content type that cannot be rendered by the browser,
it automatically downloads it to the default download location without no-
tifying or asking the user. This “carpet bomb” attack may trick users into
clicking on the malicious files by mistake or through curiosity. Safari Carpet
Bomb has the distinction of bringing the term “blended threat” into the se-
curity vernacular, because if you are able to litter user’s machines with arbi-
trary files, you can further the impact and affect other applications that trust
content on the local file system.

4. 	Clickjacking/Videojacking by Jeremiah Grossman and
	R obert Hansen [5]

Think of any button (image, link, form, etc.) on any Web site that can ap-
pear between the Web browser walls. This includes wire transfer forms from
bank sites, DSL router buttons, Digg buttons, CPC advertising banners, Net-
flix queue, Facebook friend requests, and so on. Next consider that an at-
tacker can invisibly hover these buttons below the user’s mouse using iframe
tags and CSS opacity functionality, so that when a user clicks on something
they visually see, they’re actually clicking on something the attacker wants
them to—you now have clickjacking. We also demonstrated that clickjack-
ing can be used to trick users into enabling a Web cam and microphone
through a Flash movie to enable remote surveillance. If you haven’t done so
already, I strongly suggest you upgrade to Flash version 10 or later or at least
cover up the camera with a Post-It note. Finally, cross-site request forgery
defenses using one-time tokens (nonces) can also be bypassed using click-
jacking.

5. 	A Different Opera by Stefano Di Paola [6]

Until it was patched, the Opera Web browser itself was vulnerable to
a cross-site scripting vulnerability in the History Search page, where
JavaScript execution occurred under the opera:* context. Using iframe tags
and a cross-site request forgery, this provided a malicious attacker with
the ability to modify browser settings under opera:config, specifically the
“mailto” preference. Updating the mailto preference to an arbitrary value
could enable the arbitrary execution of operating system commands.

18	 ; LO G I N : VO L . 3 4, N O. 6

6. 	Abusing HTML 5 Structured Client-Side Storage by Alberto Trivero [7]

HTML 5 has introduced three powerful new ways to store significant
amounts of data on the client’s PC through the browser. This allows storage
of much more data than standard cookies, in Session Storage, Local Stor-
age, and Database Storage. If a Web application using this kind of client-side
storage is vulnerable to cross-site scripting, attackers can use their payload
to read or modify the content of known storage keys on the computer’s vic-
tim. If the Web application loads data or code from the local storage, this
could also be a powerful method to inject malicious code that will be exe-
cuted every time the Web application requests it.

7. 	Cross-Domain Leaks of Site Logins via Authenticated CSS
	 by Chris Evans and Michal Zalewski [8]

Web browser vendors take great pains to ensure that their same-origin pol-
icy prevents code on one Web site from obtaining details, such as authen-
ticated content or session cookie data, from another Web site. Violations of
the same-origin policy, such as the ability to determine if a user is actively
logged on to an arbitrary Web site (e.g., a social network), has serious secu-
rity and privacy implications. One way this can be achieved is through the
inline inclusion of authenticated Cascading Style Sheets on off-domain lo-
cations by a malicious Web page. The malicious Web page checks to see if
unique CSS properties have been loaded by the off-domain Web page using
standard JavaScript APIs. If so, the user is logged in—a simple Boolean re-
sult. Similarly, this same attack can be performed with content that only ap-
pears in authenticated sessions, including images and JavaScript files.

8. 	Tunneling TCP over HTTP over SQL Injection by Glenn Wilkinson,
	 Marco Slaviero, and Haroon Meer [9]

The common Web infrastructure is designed using a multi-tier architecture.
A client connects to the server (port 80/443), which connects to back-end
databases and applications to generate dynamic content. Remote clients may
not directly connect to the back-end systems, where the crown jewels are lo-
cated, as the server can, and certainly cannot communicate with them over
arbitrary protocols and ports—that is, unless the server has a SQL injection
vulnerability. In this technique, squeeza, a tool for exploiting SQL injection,
is used to upload reDuh to the vulnerable server as a JSP, PHP, or ASP file.
reDuh, when executed as a Web application on the vulnerable server, creates
a TCP tunnel through validly formed HTTP requests using a client-server
model. reDuh gives an attacker access to the server behind the first-layer
firewall, which then acts as a relay to communicate with any reachable back-
end system.

9. 	ActiveX Repurposing by Haroon Meer [10]

Resident or latent ActiveX controls, including those used to access SSL
VPNs, can be abused by a malicious attacker. In this technique, a particu-
lar ActiveX control included the features to update itself if the server in-
formed it of a new software version. By simply instantiating the control and
passing it a higher build number and a URL path to a downloadable file, it
would cause the client to download a possibly malicious file. Before loading
the control, Internet Explorer would first check the downloaded file to see
if it was properly signed. If it was not, then the file would not be executed.
However, the file would still download to a predictable location on the local

; LO G I N : D ecem b e r 20 0 9	top te n We b h acking tech ni qu es : “ wh at ’s po ssi b le , not pro ba b le”	 19

file system, where it would remain. Upon first malicious instantiation, an
attacker would force the control to download a mock configuration file it
supported. The second instantiation would call the control and point to the
previously downloaded configuration file, which could contain arbitrary op-
erating system commands, including an uninstall method.

10.	F lash Parameter Injection by Yuval Baror, Ayal Yogev, and
	 Adi Sharaban [11]

Flash parameter injection introduces a new way to inject values into global
parameters in Flash movies while the movie is embedded in its original
HTML environment. These injected parameters can grant the attacker full
control over the page DOM, as well as control over other objects within the
Flash movie. This can lead to more elaborate attacks which take advantage
of the interaction between the Flash movie and the HTML page in which
it is embedded. There are several different FPI variants, and most include
tricking the server into sending back a page where user input is interpreted
as Flash parameters. This allows an attacker to inject malicious global pa-
rameters to the Flash movie and exploit Flash-specific vulnerabilities. When
an attacker is able to access and control global Flash parameters, he can
achieve attacks such as cross-site scripting through Flash, cross-site flashing,
and changing the flow of the Flash video.

Conclusion

There is a difference between what is possible and what is probable, some-
thing we often lose sight of in the world of information security. For ex-
ample, a vulnerability represents a weakness an intruder may exploit in an
asset by way of a particular attack technique, such as those described above.
Obviously, a vulnerability’s mere existence does not necessarily mean it will
be exploited or indicate by whom or to what extent. Some vulnerabilities are
more difficult to exploit than others and therefore attract different attack-
ers. Often a particular attack technique will only become widely used ma-
liciously years after initial discovery, similarly to SQL injection. This is why
we are exploring them now.

What we do know is that attack techniques tend to only be taken seriously
after they are both well understood and respected. We can assist with un-
derstanding through awareness efforts but, unfortunately, historically respect
is gained through mass exploitation.

references

[1] Top Ten Techniques blog entry: http://jeremiahgrossman.blogspot.
com/2009/02/top-ten-web-hacking-techniques-of-2008.html.

[2] GIFAR technique: http://xs-sniper.com/blog/2008/12/17/sun-fixes-gifars/.

[3] Breaking Google Gears’ cross-origin communication protection:
http://blog.watchfire.com/wfblog/2008/12/breaking-google-gears-cross
-origin-communication-model.html.

[4] Safari Carpet Bombing: http://www.dhanjani.com/blog/2008/05/
safari-carpet-b.html.

[5] Clickjacking: http://www.sectheory.com/clickjacking.htm.

[6] Opera History attack: http://seclists.org/fulldisclosure/2008/Oct/
0401.html.

20	 ; LO G I N : VO L . 3 4, N O. 6

[7] Abusing HTML 5 Structured Client-Side Storage: http://trivero
.secdiscover.com/html5whitepaper.pdf.

[8] Cross-domain leaks of site logins via Authenticated CSS: http://
scarybeastsecurity.blogspot.com/2008/08/cross-domain-leaks-of-site
-logins.html.

[9] Tunneling TCP over HTTP over SQL Injection: http://www.sensepost
.com/research/reDuh/.

[10] ActiveX Repurposing: http://www.sensepost.com/blog/2237.html.

[11] Flash Parameter Injection: http://blog.watchfire.com/wfblog/2008/
10/flash-parameter.html.

