
THE MAGAZINE OF USENIX & SAGE
February 2003 • volume 28 • number 1

The Advanced Computing Systems Association &

The System Administrators Guild

&

inside:
PROGRAMMING

McCluskey: An Introduction to C#

11February 2003 ;login: AN INTRODUCTION TO C# ●

●

P

R
O

G
R

A
M

M
IN

G

C# (pronounced “cee sharp”) is a new programming

language, part of the .NET Framework initiative from

Microsoft. This column is the first of a series that will

discuss the C# language and libraries. But before we

delve into technical details, we need to present a little

background and show where C# fits into the larger

picture.

A Proprietary Language?
An obvious question about C# is whether it is simply another in
a series of proprietary languages (e.g., Visual Basic). Such lan-
guages are clearly useful but live in a different world from stan-
dardized languages like C. It’s impossible to predict the future
with any certainty, but C# does have a shot at becoming a
widely used standard. The language has a specification external
to Microsoft, and several independent projects are underway to
develop C# compilers: for example, the Mono effort for Linux.
We will give details of these efforts later in the discussion.

The .NET Framework
If you read the technical press at all, you’ve probably heard of
something called the .NET Framework. This is an elusive term.
What does it mean? One way of illustrating the concepts of the
.NET Framework is to consider what happens when a C# pro-
gram is compiled and executed. Let’s start with the Hello pro-
gram:

using System;

class Hello {
static void Main() {

Console.WriteLine("Hello, World!");
}

}

The first interesting part of .NET is compilation. This program
is compiled into an intermediate language called MSIL or IL,

not straight into binary code. If I’d written the same program in
a different language supported by .NET, the IL representation
would be similar to what is produced for the C# program
above. This point illustrates one of the key goals of the .NET
effort – the ability to mix code written using different program-
ming languages. This goal is supported by a common interme-
diate language.

The IL output for the Hello program looks like this:

.method private hidebysig static void Main() cil managed
{

.entrypoint
// Code size 11 (0xb)
.maxstack 1
IL_0000: ldstr "Hello, World!"
IL_0005: call void [mscorlib]System.Console::

WriteLine(string)
IL_000a: ret

} // end of method Hello::Main

The program is compiled into an intermediate language which
is then executed at some later time. What happens then? A piece
of the .NET Framework called the Common Language Runtime
(CLR) actually executes the intermediate form of the program.
The intermediate is compiled on demand into machine code,
using a just-in-time compiler (JIT), and executed. The CLR also
takes care of issues such as memory layout, garbage collection,
and security. Furthermore, it provides a certain execution envi-
ronment paradigm that supports the languages available for
.NET.

If you study this example a bit, it’s obvious that the code is
making reference to some sort of a standard library – note the
mention of System and Console.WriteLine, and so on. Another
part of the .NET Framework is a set of framework base classes,
used for performing operations such as I/O, string manipula-
tion, and networking. The Hello program makes use of some of
these classes for actual output to the console.

As we already mentioned, it’s possible to mix languages and
libraries within .NET. So in our Hello example, it’s possible that
the Console.WriteLine method for doing I/O is not in fact writ-
ten in C# – it may be implemented in some other language. A
couple of pieces of the .NET Framework called the Common
Language Specification and Common Type System are used to
support such interoperability. These specifications describe
areas such as inheritance, object properties, exceptions, inter-
faces, and values. This whole area is in some sense analogous to
the older terms “calling conventions” and “runtime environ-
ment” that we’ve always had to worry about when mixing lan-
guages. For example, if I have some C++ code, and I call a C
function, compiled with a different compiler, then I need to

an introduction to C#
by Glen
McCluskey

Glen McCluskey is a
consultant with 20
years of experience
and has focused on
programming lan-
guages since 1988.
He specializes in Java
and C++ perfor-
mance, testing, and
technical documen-
tation areas.

glenm@glenmccl.com

Vol. 28, No. 1 ;login:12

worry about such things as whether function arguments are
pushed onto the stack from left to right or right to left. I need to
be concerned with whether two different languages that I’m
working with use the same byte order and size and representa-
tion for data.

Higher-Level Services
In discussing the .NET Framework, thus far we’ve looked at
low-level features. There’s the Common Language Runtime,
along with standards such as the Common Type System and the
Common Language Specification that describe how languages
interoperate. There is also a set of framework base classes that is
part of this core package.

The .NET Framework also contains several groups of higher-
level services and classes:

■ ADO.NET supports database manipulation and XML data
handling.

■ Windows Forms are the basic mechanism for building win-
dows-based applications. A Forms object represents win-
dows in your application.

■ Web Forms are a mechanism for dynamically generating
Web pages on a server, combining a static HTML page with
C# code that generates dynamic content. The C# code runs
on a server with the resulting generated HTML page being
sent to a Web browser. Web Forms are something like
Active Server Pages.

■ Web Services allow you to build components whose meth-
ods can be invoked across the Internet. It is based on SOAP
(Simple Object Access Protocol), which in turn is based on
XML, HTTP, and SMTP.

You can also combine C# code with code written in other .NET
languages, including VB.NET, Managed C++, and JScript .NET.

The .NET Framework Hierarchy
If we represent the .NET Framework using a hierarchy from
highest to lowest levels, it would look something like this:

C#, VB.NET, Managed C++, JScript .NET
Windows Forms, Web Forms, Web Services
ADO.NET, XML
Framework Base Classes (I/O, string, networking, etc.)
Common Language Runtime

Memory Layout
Garbage Collection
Security
Debugging
Exception Handling
Just-in-Time Compilation

Common Type System, Common Language Specification
Operating System

The Flavor of C#
What is C# like? Let’s look at a few key areas to help answer this
question.

C# is an object-oriented language, similar in many ways to the
C++ and Java languages. It also uses syntax similar to what
you’re already familiar with in C or C++. For example, this pro-
gram adds two numbers and prints the sum:

using System;

class prog1 {
static int add(int a, int b) {

return a + b;
}

static void Main() {
int a = 37;
int b = 47;

int c = add(a, b);

Console.WriteLine("{0}", c);
}

}

C# is a “safe” language, meaning that common problems such as
memory leaks, de-referencing invalid pointers, or ignoring
error return codes are much less of an issue than with other
languages. C# uses garbage collection instead of user-level
memory management, doesn’t normally allow the use of point-
ers, and uses exceptions to propagate errors. If you need to use
pointers, you can explicitly do so by means of an “unsafe”
method modifier that allows pointers within that method. For
example:

using System;

class prog2 {
unsafe static void Main() {

char* p = (char*)0x1234;
*p = 'x';

}
}

C# supports attributes and metadata and reflection. For exam-
ple, you can devise custom attributes and use them to represent
detailed information about bug fixes you have made in your
code. Such information could also be represented within com-
ments, which is a traditional approach, but attributes have a
major advantage – they are not unstructured comments but can
be queried by a C# program. They are data about your code that
is carried along with your code.

C# is Internet-centric. For example, it includes support for
remote method invocation, XML and XML documentation

13February 2003 ;login:

●

P

R
O

G
R

A
M

M
IN

Gcomments, serializing objects to be sent across a network, and
so on.

In this column we’ve described the context in which C# oper-
ates. In future columns we’ll start looking at the language itself,
and examine some of its distinctive features.

References
Many C# books are available. Two recommended ones are:

Jesse Liberty, Programming C#, 2d ed. (Sebastopol, CA: O’Reilly,
2002).

Eric Gunnerson, A Programmer’s Introduction to C#, 2d ed.
(Berkeley, CA: Apress, 2001).

C# COMPILERS AND DEVELOPMENT ENVIRONMENTS

Here are Web links for three different C# compilers you can
download. The first two of these are independent efforts, and
the last is the Microsoft SDK:

http://www.go-mono.com/c-sharp.html

http://www.southern-storm.com.au/portable_net.html

http://msdn.microsoft.com/downloads/default.asp?URL=/code/
sample.asp?url=/msdn-files/027/000/976/msdncompositedoc.xml

C# STANDARDIZATION

The C# language has an external specification, found at the
European Computer Manufacturers Association (ECMA) Web
site: ftp://ftp.ecma.ch/ecma-st/Ecma-334.pdf.

AN INTRODUCTION TO C# ●

http://www.go-mono.com/c-sharp.html
http://www.southern-storm.com.au/portable_net.html
http://msdn.microsoft.com/downloads/default.asp?URL=/code/
ftp://ftp.ecma.ch/ecma-st/Ecma-334.pdf

