
THE MAGAZINE OF USENIX & SAGE
December 2002 • volume 27 • number 6

The Advanced Computing Systems Association &

The System Administrators Guild

&

inside:
Fu, Kaminsky, and Mazières: Using SFS for a Secure

Network File System

Focus Issue: Security
Guest Editor: Rik Farrow

6

Introduction
The Self-Certifying File System (SFS) (http://www.fs.net/) is a secure dis-

tributed file system, and associated utilities, that can both increase the

security of networks and simplify system administration. SFS lets people

securely access file systems over insecure networks without the need for

virtual private networks (VPNs) or a public key infrastructure (PKI). In

many situations, SFS provides a suitable and more secure alternative to the

widely deployed NFS file system. Nonetheless, SFS gracefully coexists with

NFS and other file systems such as Samba. Thus, one can easily install, test,

and incrementally deploy SFS without disrupting existing network services.

SFS administration is greatly simplified by the fact that client machines have no con-
figuration options. An SFS client just needs to run a program called sfscd at boot
time; users can then access any server with no further administrative assistance. In
contrast, many distributed file systems require the client to have a list of what remote
file systems to mount where. In SFS, it is actually the server that determines which of
its file systems clients mount on what pathnames. As users access those pathnames,
client machines learn of new servers and transparently “automount” them.

SFS cryptographically secures all client-server network communications with encryp-
tion and a message authentication code. To prevent rogue servers from impersonating
valid ones, each SFS server has a public key. A server’s files all reside under a so-called
self-certifying pathname derived from its public key. Self-certifying pathnames contain
enough information for an SFS client to connect to a server and establish a crypto-
graphically secure channel – even if the client has only just learned of the server
through a user’s file access. A variety of techniques exist for users to obtain servers’
self-certifying pathnames securely.

In addition to protecting network traffic, SFS performs user authentication to map
remote users to credentials that make sense for the local file system. SFS’s user-authen-
tication mechanism is based on public key cryptography. On the client side, an
unprivileged agent process holds a user’s private keys and transparently authenticates
him or her to remote servers as needed. On the server side, SFS keeps a database of
users’ public keys. Users can safely register the same public key in multiple administra-
tive realms, simplifying the task of accessing several realms. Conversely, administrative
realms can also safely export their public key databases to each other. A file server can
import and even merge user accounts from several different administrative realms.

BACKGROUND
The SFS project began in 1997 after one of the authors became frustrated by the lack
of a global, secure, decentralized network file system. No existing file systems had all
three properties.

NFS does not have a viable notion of security for most environments. NFS essentially
trusts client machines, allowing an attacker to impersonate a legitimate user with little
effort. NFS also lacks a global namespace, because client administrators can mount

using SFS for a
secure network
file system

Vol. 27, No. 6 ;login:

by Kevin Fu,

Kevin Fu is a doctoral
student at the Labo-
ratory for Computer
Science at MIT. His
research interests are
computer security,
cryptography, and
operating systems.

fubob@mit.edu

Michael
Kaminsky,

Michael Kaminsky is a doctoral student at
the Laboratory for Computer Science at
MIT. His research interests are operating
systems, security, and networking.

kaminsky@lcs.mit.edu

and David
Mazières

David Mazières is an
assistant professor of
computer science at
New York University.
He began the SFS
project while a doc-
toral student at MIT.

dm@cs.nyu.edu

NFS file systems anywhere. The same files might be accessible under two different
paths on two different machines.

The Andrew File System (AFS) offers a global namespace and, in some contexts, secu-
rity, but it cannot guarantee data integrity to users who do not have accounts in a
server’s administrative realm. Moreover, when users have several accounts in different
realms, AFS makes it hard to access more than one account at a time. As a result, AFS
tends to lead to inconveniently large administrative realms – often as large as an entire
campus. Such unwieldy realms in turn restrict users who might want greater auton-
omy. For example, it is not uncommon for AFS users to have to recycle “guest”
accounts to avoid the onerous burden of going through a central administration to
create a new account for every visitor. SFS, in contrast, lets a server operator both
import a campus-wide user database and manage additional local accounts.

STATUS
SFS is free software and runs on UNIX operating systems that have solid NFSv3 sup-
port. We have run SFS successfully on recent versions of OpenBSD, FreeBSD, MacOS
X, OSF/1, Solaris, and several Linux distributions. Although a Windows port exists, it
relies on a commercial NFS implementation. We currently have no plans to merge the
Windows port into the mainline distribution, though we would like to see this happen
eventually.

There are pre-packaged SFS distributions available for Debian, Red Hat, and FreeBSD,
among others. The packages greatly simplify installation, because SFS requires a robust
compiler that can cope with extensive use of C++ templates. (Some versions of GCC
generate internal compiler errors when compiling SFS from scratch.) Because SFS is
open source, US regulations allow export of the code to most countries.

The SFS installation and setup procedures are described below. The SFS Web site
(http://www.fs.net/) has technical papers which provide a detailed discussion of related
work, a performance analysis, and the theory behind SFS.

OVERVIEW
From a system administrative point of view, SFS consists of two programs run at boot
time. SFS clients must run the SFS client daemon (sfscd), which creates the /sfs direc-
tory and implements the auto-mounting of remote SFS servers. SFS servers must run
the SFS server daemon (sfssd), which makes local file systems available to SFS clients
on TCP port 4.

Internally, however, SFS is structured in a modular manner and consists of many dae-
mons. sfscd and sfssd each launch and communicate with a number of subsidiary
daemons that actually implement the different SFS features (Figure 1). For example,
sfscd is responsible for automatically mounting new remote file systems. On the server
machine, sfssd accepts incoming SFS connections and de-multiplexes these requests
to the appropriate SFS server daemons. The three basic servers are the SFS file server,
the authentication server, and the remote login server. The client and server file system
daemons communicate with the kernel using NFS loopback. SFS components com-
municate with each other using RPC. SFS implements a secure RPC transport which
provides confidentiality and integrity. Finally, the SFS agent runs on the client
machine, one instance per user.

7December 2002 ;login:

NFS does not have a viable

notion of security for most

environments.

USING SFS FOR A SECURE NETWORK FILE SYSTEM ●

●
SE

C
U

R
IT

Y

http://www.fs.net/

Vol. 27, No. 6 ;login:

If you already use NFS, switching to SFS is straightforward. Because the SFS server can
coexist with an NFS server on the same machine, you don’t have to switch “cold
turkey” from NFS to SFS: you can serve both from the same machine. For instance,
you may wish to continue using NFS for local machines but make SFS available for
users traveling or using wireless networks.

A single machine can be both an SFS client and a server. However, the client software
will refuse to mount an SFS file server running on the same machine, since this can
cause deadlock in the kernel on some operating systems. This is a result of SFS’s imple-
mentation as an NFS loopback server for portability.

Naming Servers
A fundamental problem that SFS tries to address is how to name resources securely.
Setting up secure communication requires authentication of the remote resource; sys-
tems today often use some form of public key cryptography. The basic problem facing
these public key–based systems is key distribution: how does the user who wants to
connect securely to a remote resource get that resource’s public key securely?

SELF-CERTIFYING PATHNAMES
SFS does not mandate any particular kind of key distribution, but instead provides a
flexible set of options based on self-certifying pathnames. Given a self-certifying path-
name, the public key of the file server can be certified with no additional information.
Thus, if one obtains a self-certifying pathname in a trusted manner, the SFS client will
automatically verify the associated server’s public key.

Figure 2 shows the two basic components of self-certifying pathnames: the location
and HostID. The location is the DNS hostname of the file server; it tells the client soft-
ware where to find the server, but not how to communicate securely with it. The

HostID portion of the self-certifying pathname is what allows secure communication.
The HostID is a SHA-1 hash of the server’s public key, similar in concept to a PGP fin-
gerprint. Hence, the client can insecurely ask the server for its public key, then verify

8

Figure 2: A self-certifying pathname

Figure 1: Architectural overview of SFS

that the public key actually matches the hash in the pathname. A user who trusts in the
authenticity of the HostID can then trust in the authenticity of the corresponding
public key that the client has fetched and verified.

When a user accesses a self-certifying pathname (under /sfs), the SFS client software
contacts the server based on the location component. The server responds with its
public key. If the server can prove its identity by demonstrating it has the correspon-
ding private key, the SFS client will automatically mount the file server under /sfs. All
communication between the client and server is encrypted and mutually authenti-
cated. We will discuss user authentication shortly.

While self-certifying pathnames require some method for users to obtain HostIDs
securely, they are not wedded to any particular public key infrastructure or method of
key distribution. The user is free to decide, even on a host-by-host basis, how to obtain
the HostID of a server. Users who need a centralized repository of public keys (a certi-
fication authority) and those who want to set up stand-alone servers both benefit from
self-certifying pathnames. The following sections demonstrate several useful tech-
niques for securely obtaining servers’ self-certifying pathnames.

SYMBOLIC LINKS AS SIMPLE CERTIFICATES
Symbolic links provide an easy way for users to refer to a self-certifying pathname. For
example, a user might create a symbolic link as follows:

redlab -> /sfs/@redlab.lcs.mit.edu,gnze6vwxtwssr8mc5ibae7mtufhphzsk

When the user accesses the path redlab, the SFS client software will mount the file
server at redlab.lcs.mit.edu with the given public key hash. Symbolic links allow users
to assign human-readable names to hard-to-type self-certifying pathnames. The user
could store these links in a subdirectory of his or her home directory, and they would
serve a similar function to the user’s SSH known_hosts file.

Administrators can use symbolic links to provide a system-wide set of names for com-
monly used file servers. These may be distributed using a floppy disk, rsync/rdist over
SSH, or whatever other technique is in use for remotely administering software on
machines. Once a single symbolic link has been installed on a client, administrators
can bootstrap a larger set of self-certifying pathnames and symbolic links from a
trusted source. These links can be placed in a well-known location (e.g., /sfslinks) and
would serve a similar function to a host-wide SSH /etc/ssh/ssh_known_hosts file.

Symbolic links in the file system have an advantage over a known_hosts-style name
cache, because a name lookup can involve several levels of symbolic links; moreover,
these symbolic links can reside on multiple file systems, some of which are on SFS.
This feature of symbolic links and self-certifying pathnames provides a convenient,
simple way to implement certificate authorities as file servers. As a hypothetical
example,

/sfs-CAs:
sun -> /sfs/@sfs.sun.com,ytzh5beann4tiy5aeic8xvjce638k2yd
thawte -> /sfs/@thawte.com,...
...

/sfs/@sfs.sun.com,ytzh5beann4tiy5aeic8xvjce638k2yd:
yahoo -> /sfs/@www.yahoo.com,...
redhat -> /sfs/@redhat.com,...
...

9December 2002 ;login:

Symbolic links provide an

easy way for users to refer to

a self-certifying pathname.

●
SE

C
U

R
IT

Y

USING SFS FOR A SECURE NETWORK FILE SYSTEM ●

Vol. 27, No. 6 ;login:

If a user wants to read from the file server which certificate authority Sun calls redhat,
the user can reference a path such as:

cat /sfs-CAs/sun/redhat/README

The directory /sfs-CAs is on the local machine, the directory /sfs-CAs/sun is on the
machine sfs.sun.com, and the directory /sfs-CAs/sun/redhat is on the machine red-
hat.com (as is the file README). The pathname by which one accesses a file deter-
mines how the file server is authenticated. For example, the same README file might
be available as:

/sfs-CAs/thawte/redhat-server/README

SERVER NICKNAMES
Some users might require a more sophisticated means of naming a server. SFS allows
users to invoke arbitrary certification programs to map a human-readable “nickname”
into a self-certifying pathname. The user’s agent keeps a list of these certification pro-
grams and runs them as needed.

Server nicknames are non-self-certifying names that a user accesses under /sfs (e.g.,
/sfs/work or /sfs/lab-machine1). When the SFS client software sees a nickname, it asks
the user’s agent to translate the nickname into a self-certifying pathname. The agent
will invoke, in order, all of the certification programs that the user has registered with
it until there is a successful match. The sfskey utility, discussed in the examples, allows
users to register certification programs with their agents.

Certification programs provide the user with a lot of flexibility. For example, the certi-
fication program might look up the nickname in an LDAP database. As a less complex
example, the SFS distribution actually comes with a program called dirsearch that
takes a list of directories and looks up the nickname in each one until it finds a sym-
bolic link with that name. For instance, the certification program

dirsearch ~/my-links /sfslinks/sfs.mit.edu /sfs-CAs/sun

would have the effect of giving precedence to the user’s personal links directory first,
then some university-wide directory, and finally Sun’s. The dirsearch program allows
the user to specify his or her own trust policy.

SECURE REMOTE PASSWORD PROTOCOL (SRP)
SFS also provides a means of securely downloading a server’s self-certifying pathname
with a password. In this case, the password typed by the user is actually used to authen-
ticate the server to the user in addition to the more conventional authentication of user
to server. Though users cannot be expected to remember self-certifying pathnames,
they will remember passwords of their own choosing. In this way, users can always
resort to typing their passwords if there is not a more convenient way of obtaining a
server’s pathname.

SFS uses the Secure Remote Password Protocol (SRP) for password authentication.1

SRP allows users both to download self-certifying pathnames securely and to down-
load encrypted copies of their own private keys. When a user registers a public key
with an SFS server, the user can additionally give the server an encrypted copy of the
corresponding private key and a secret “SRP parameter” computed as a function of his
or her password and the server’s location. When the user and server later engage in the
SRP protocol, SRP mutually authenticates the two sides’ communications. The details

Certification programs

provide the user with a lot of

flexibility.

10

1. Thomas Wu, “The Secure Remote Password
Protocol,” Proceedings of the 1998 Internet Soci-
ety Network and Distributed System Security
Symposium, San Diego, CA, March 1998, pp.
97-111.

of SRP are handled for the user by the sfskey program (or indirectly through sfsagent,
which can invoke sfskey). After a successful run of SRP, sfskey installs a symbolic link
from the server’s location to its self-certifying pathname. For example:

/sfs/redlab.lcs.mit.edu ->
/sfs/@redlab.lcs.mit.edu,gnze6vwxtwssr8mc5ibae7mtufhphzsk

We chose SRP rather than a simpler protocol so as to protect weak passwords against
offline “dictionary attacks.” In other file systems, such as AFS, an attacker can exchange
a single message with the server, then invest a large amount of computation to guess
and verify an unbounded number of candidate passwords. SRP allows only “online”
password-guessing attacks – the number of passwords an attacker can guess is propor-
tional to the number of messages the attacker has exchanged with the server or user.

Examples
Many operating system distributions offer pre-compiled SFS binary packages. These
packages provide both client and server support out-of-the-box. Other users will most
likely have to compile and install SFS from the source. The SFS Web site contains
details about the compilation process and about compiler compatibility. Because the
client software is implemented as an NFS loopback server, all SFS installations require
working NFSv3 client support.

INSTALLING THE SFS CLIENT
Installing the SFS client is straightforward using package management tools such as
dpkg or RPM. If you are behind a firewall, you will need to allow outgoing connec-
tions to TCP port 4. The following example shows how to set up SFS on a freshly
installed Red Hat 7.3 box:

[root@client /root]# rpm -ivh sfs-0.7-1.i386.rpm
Preparing... ### [100%]

1:sfs ### [100%]
[root@client /root]# /etc/rc.d/init.d/sfscd start
Starting sfscd: [OK]

SFS clients require no configuration. Simply run the program sfscd as shown above,
and a directory /sfs should appear on your system. To test your client, access our SFS
test server. Here we download a file:

$ cd /sfs/@sfs.fs.net,uzwadtctbjb3dg596waiyru8cx5kb4an
$ cat CONGRATULATIONS
You have set up a working SFS client.

Note that the /sfs/@sfs.fs.net:... directory does not need to exist before you run the cd
command. SFS transparently mounts new servers as you access them.

USER AUTHENTICATION
In the example above, the SFS server is exporting its file system publicly and read-only.
Typically, however, SFS servers will require user authentication, so that only registered
users can access the file system. A registered user is one whose public key has been
installed on the SFS server: specifically, in the “authserver.” To register a public key, log
into the file server and run the command:

$ sfskey register

11December 2002 ;login:

Many operating system

distributions offer pre-com-

piled SFS binary packages.

●
SE

C
U

R
IT

Y

USING SFS FOR A SECURE NETWORK FILE SYSTEM ●

Vol. 27, No. 6 ;login:

This will create a public-private key pair for you and register the public key with the
server. Note that if you already have a public key on another server, you can reuse that
public key by giving sfskey your identifier at that server (i.e., sfskey register user@
other.server.com).

The SFS user registration process also sets up SRP. As mentioned above, SRP allows the
user to securely download a copy of the server’s self-certifying hostname. SFS also uses
SRP to store an encrypted copy of the user’s private key on the server. The user can
then download a copy of his or her private key from the server knowing only a pass-
word. Because the private key is encrypted, the server does not have access to it.

In some settings, users do not have permission to log into file servers and thus cannot
run the sfskey register command. In this case, there are two options for creating user
accounts. The system administrator can ask the user to supply a public key, or else can
ask the user for an initial password and use the password to register a temporary pub-
lic key and SRP parameter.

RUNNING THE SFS USER AGENT
Once you have registered your public key with an SFS server, you must run the
sfsagent program on an SFS client when you wish to access the server. On the client,
run the command:

$ sfsagent user@my.server.com
Passphrase for user@my.server.com/1024:

my.server.com is the name of the server on which you registered. user is your identi-
fier on that server. (The value 1024 is the size in bits of SRP’s cryptographic parame-
ters, which you can ignore, though paranoid users may wish to avoid small values.)
This command does three things: it runs the sfsagent program, which persists in the
background to authenticate you to file servers as needed; it fetches your private key
from the server and decrypts it using your password and SRP; and, finally, it fetches
the server’s public key and creates a symbolic link from /sfs/my.server.com to
/sfs/@my.server.com,HostID. Each user has a different view of the /sfs directory. Thus,
one user’s links in /sfs will not be visible to another user, and two users’ links will not
interfere with each other.

If, after your agent is already running, you wish to fetch a private key from another
server or download another server’s public key, you can run the command:

$ sfskey add user@myother.server.com
Passphrase for user@myother.server.com/1024:

In fact, sfsagent runs this exact command for you when you initially start it up. Note
that sfskey does not take a self-certifying pathname as an argument; the user’s pass-
word and SRP are sufficient to authenticate the server holding your encrypted private
key.

To generate a public-private key pair explicitly and save it to disk, use the following
command:

$ sfskey gen

Optional arguments allow you to specify the key size and name. The sfskey subcom-
mands edit, list, delete, and deleteall manage the keys stored in your SFS agent. The

SRP allows the user to

securely download a copy of

the server’s self-certifying

hostname.

12

sfskey update command allows you to replace the key stored on a server with a new
one.

When you are done using SFS, you should run the command

$ sfskey kill

before logging out. This will kill your sfsagent process running in the background and
get rid of the private keys it was holding for you in memory. There is also an option to
specify a timeout to automatically remove keys from memory.

SETTING UP AN SFS SERVER
Setting up an SFS server requires very little configuration. The procedure consists of
setting up the NFS loopback and choosing what directory trees to export. For extra
security, you may wish to configure local firewall rules to prevent non-local users from
probing portmap. Recall that only the server itself needs to access the NFS exports.
Here we start with a Red Hat 7.3 box that has the SFS client software already installed.

[root@server /root]# rpm -ivh sfs-servers-0.7-1.i386.rpm
Preparing... ### [100%]

1:sfs-servers ### [100%]
[root@server /root]#

Let’s assume you want to export disks mounted on /disk/disk0 and /disk/disk1 to
authorized users. We first need to create mount points for the SFS root file system and
for each exported directory tree.

[root@server /root]# mkdir -p /var/sfs/root/disk0 /var/sfs/root/disk1

Recall that for portability reasons, SFS accesses the file systems it exports by pretending
to be an NFS client over the loopback interface. Thus, the server must export the
desired file systems to the localhost via NFS. We add the following three lines to the
/etc/exports file to enable NFS exporting of /var/sfs/root, /disk/disk0, and /disk/disk1 to
the localhost:

[root@server /etc]# cat /etc/exports
/var/sfs/root localhost(rw)
/disk/disk0 localhost(rw)
/disk/disk1 localhost(rw)

Now we start the NFS server:

[root@server /etc]# /etc/rc.d/init.d/portmap status
portmap (pid 643) is running...
[root@server /etc]# /etc/rc.d/init.d/nfs start
Starting NFS services: [OK]
Starting NFS quotas: [OK]
Starting NFS mountd: [OK]
Starting NFS daemon: [OK]

We’re almost done! Now we need to create the server’s public-private key pair and tell
the SFS server to also export the same directories:

[root@server /root]# sfskey gen -P /etc/sfs/sfs_host_key
Creating new key for /etc/sfs/sfs_host_key.

Key Name: root@my.server.com

sfskey needs secret bits with which to seed the random number generator.
Please type some random or unguessable text until you hear a beep:

13December 2002 ;login:

Setting up an SFS server

requires very little

configuration.

●
SE

C
U

R
IT

Y

USING SFS FOR A SECURE NETWORK FILE SYSTEM ●

Vol. 27, No. 6 ;login:

DONE
[root@server /root]# cat /etc/sfs/sfsrwsd_config
Export /var/sfs/root / R
Export /disk/disk0 /disk0
Export /disk/disk1 /disk1

The R flag makes /var/sfs/root globally readable – you can omit this flag if you do not
wish to have any anonymously accessible directories. Finally, we start the server:

[root@server sfs]# /etc/rc.d/init.d/sfssd start
Starting sfssd: [OK]
[root@server sfs]# tail /var/log/messages
Sep 12 23:46:43 server sfssd: sfssd startup succeeded
Sep 12 23:46:43 server : sfssd: version 0.7, pid 1881
Sep 12 23:46:43 server : sfsauthd: version 0.7, pid 1885
Sep 12 23:46:44 server : sfsauthd: serving
@server.mit.edu,66zrwhw5i9jr5ym7i9mkcxijn5fmtaz8
Sep 12 23:46:44 server : sfssd: accepted connection from 18.247.7.168
Sep 12 23:46:44 server rpc.mountd: authenticated mount request

from localhost.localdomain:790 for /disk/disk0 (/disk/disk0)
Sep 12 23:46:44 server rpc.mountd: authenticated mount request

from localhost.localdomain:790 for /disk/disk1 (/disk/disk1)
Sep 12 23:46:44 server rpc.mountd: authenticated mount request

from localhost.localdomain:790 for /var/sfs/root (/var/sfs/root)
Sep 12 23:46:44 server : sfsrwsd: version 0.7, pid 1886
Sep 12 23:46:44 server : sfsrwsd: serving /sfs/@server.mit.edu,

66zrwhw5i9jr5ym7i9mkcxijn5fmtaz8

REMOTE LOGIN
REX is an SSH-like remote login tool that uses self-certifying paths instead of a static
known_hosts file. While REX can be disabled on the server by commenting out a sin-
gle line in the sfssd_config configuration file, it makes remote login more pleasing to
users with home directories stored in SFS. By default, REX forwards X11 connections
and forwards the SFS agent itself. The basic invocation is with a hostname:

$ rex amsterdam.lcs.mit.edu
rex: Prepending '@' to destination 'amsterdam.lcs.mit.edu' and attempting SRP
Passphrase for fubob@amsterdam.lcs.mit.edu/1024:
rex: Connecting to @amsterdam.lcs.mit.edu,bkfce6jdbmdbzfbct36qgvmpfwzs8exu
amsterdam:(~/)%

REX can use the SFS agent and/or SRP to map DNS hostnames to self-certifying path-
names as described earlier. In the above example, REX prompts for a password and
uses SRP to obtain amsterdam’s self-certifying pathname and the user’s private key
securely. Subsequent logins to the same server do not require a password.

REX also accepts other names for servers. For example, REX accepts self-certifying
pathnames and even SFS symbolic links as a way of naming servers. System adminis-
trators may find fully qualified self-certifying pathnames useful for non-interactive
scripts. Here we generate a list of currently logged-in users:

$ rex @amsterdam.lcs.mit.edu,bkfce6jdbmdbzfbct36qgvmpfwzs8exu
/usr/bin/who

Connection caching allows subsequent REX executions to the same server to avoid
public key operations. The client and server generate a new session key based on the

14

previous one. The speedy reconnection will be useful for system administrators who
frequently make multiple remote execute commands to the same servers. No longer
will each command require a good portion of a second to complete.

You can see what sessions your agent currently maintains by running

$ sfskey sesslist

The additional command sfskey sesskill removes a connection from the agent’s cache.

SSH was the main inspiration for REX, as we needed an SSH-like tool that could work
with SFS. Although we could have extended SSH for this purpose, SSH servers typi-
cally read files in users’ home directories during user authentication. This policy is
incompatible with our goal of integrating remote login with a secure file system, as the
remote login machine would generally not have permission to read users’ files before
those users are authenticated.

For those who are hesitant to use REX but need remote login to work with home
directories stored in SFS, the libpam-sfs module may be a reasonable alternative.

SFS Toolkit
The SFS file system infrastructure or “toolkit” provides support for several other proj-
ects and extensions. Below is a short list of what the extended SFS world has to offer.
For all the details and references, see the SFS Web page.

FILE SYSTEMS
One of the goals of SFS is to facilitate the less painful development of new file systems.
As an example, one of the authors wrote a crude encrypted file system in just 600
additional lines of C++ code. SFS provides an asynchronous library and an efficient
NFS loopback server. By implementing the server side of the NFS loopback server, a
developer can create a new file system that works on all operating systems with solid
NFSv3 support.

In a read-only dialect of SFS (TOCS 20(1)), a publisher could replicate content on
untrusted servers while maintaining the integrity of the file system as a whole. The
read-only dialect is significantly faster than the read-write dialect, because the server
performs no online cryptography. Another dialect caters to low-bandwidth connec-
tions (SOSP 2001). The Chord system (SIGCOMM 2001) uses the SFS asynchronous
library to implement a peer-to-peer lookup algorithm. The Cooperative File System
(SOSP 2001) uses the SFS asynchronous library to implement a distributed peer-to-
peer read-only file system. Ivy (OSDI 2002) does the same for a read-write log-based
file system.

ACLS
One drawback to traditional UNIX file sharing is the lack of access control lists
(ACLs). We find that file sharing in NFS (and hence SFS) is limited because of the dif-
ficulty of creating and administering groups for users without administrative privi-
leges. In a dialect of SFS under development, the server supports ACLs similar to those
of AFS. A key difference is that we have no-hassle cross-realm support. A student at
MIT can give a friend at NYU access to a file or directory simply by adding the friend’s
public key to the appropriate ACLs. Although the ACL prototype works and appears in
the main sourcetree, it does not yet appear in an official release.

15December 2002 ;login:

One of the goals of SFS is to

facilitate the less painful

development of new file

systems.

●
SE

C
U

R
IT

Y

USING SFS FOR A SECURE NETWORK FILE SYSTEM ●

Vol. 27, No. 6 ;login:

Caveat
SFS serves files to clients using cryptographically protected communications. As such,
SFS can help eliminate security holes associated with insecure network file systems and
let users share files where they could not do so before. That said, we realize that perfect
security is a remote fantasy. Our documentation on the SFS Web site discusses many of
the security issues raised by SFS.

Conclusion
Our research groups have used SFS on a daily basis for several years. Several of us use
SFS for our home directories. In part because SFS is implemented on top of mature
NFS code, we have never lost a file to SFS. A number of groups outside of our research
groups also use SFS in production environments. We hope you find SFS as convenient
and useful as we have.

ACKNOWLEDGMENTS

Several people have contributed to the SFS development, including Chuck Blake, Ben-
jie Chen, Frank Dabek, David Euresti, Kevin Fu, Frans Kaashoek, Michael Kaminsky,
Maxwell Krohn, David Mazières, Eric Peterson, George Savvides, and Nickolai Zel-
dovich. We thank Eric Anderson, Sameer Ajmani, Michael Barrow, Rik Farrow,
Maxwell Krohn, Chris Laas, Emil Sit, and Ram Swaminathan for helpful feedback on
drafts of this article.

SFS is funded by the DARPA Composable High Assurance Trusted Systems program
under contract #N66001-01-1-8927. Support also came from an NFS Graduate Fel-
lowship and a USENIX Scholars Research Grant.

. . . we have never lost a file

to SFS.

16

