
THE MAGAZINE OF USENIX & SAGE
December 2002 • volume 27 • number 6

The Advanced Computing Systems Association &

The System Administrators Guild

&

inside:
Perrine: The Kernelized Secure Operating System (KSOS)

Focus Issue: Security
Guest Editor: Rik Farrow

37December 2002 ;login:

●
SE

C
U

R
IT

Y

Last August I had the pleasure of attending the USENIX Security Symposium

in San Francisco. As a security practitioner and former OS designer, I’ve

always considered this one of my favorite conferences, and I haven’t missed

one in quite a while. But as I attended the panel discussion of Microsoft’s

Palladium and the TCPA, I was once again struck with a curious sense of

déjà vu. Palladium in particular seems to be an attempt to create a

“trusted” hardware system to overcome the inability to create large mono-

lithic operating systems with acceptable software quality.

It seemed to me that both Palladium and TCPA were rediscovering older security solu-

tions to solve some of the same old problems. Much as I felt when Microsoft (and

some of the open source OSes) announced the “invention” of symmetrical multipro-

cessing (SMP), I felt that someone, somewhere, had not done their homework. I felt

the same way about VAX/VMS (and later, Windows NT) access control lists (ACLs),

which were pale imitations of the Multics1 ACLs.

There were SMP mainframes at least as far back as the 1960s in General Electric’s

GECOS2 and, later, Multics operating systems – up to six processors in some cases. For

those of you who don’t remember, when Bell Labs pulled out of the GE/MIT Multics

project (Project MAC), UNIX was conceived in part as a smaller, more practical imple-

mentation of the “Multics vision.” IBM and (I think) UNIVAC also sold multiproces-

sor mainframes in the same era.

Now, I hate the “when I was a kid we had to feed wood into the boiler to power our

steam computers” stories as much as everyone else. But, to be honest, the computer

science and engineering disciplines do a terrible job of teaching the history of our

field. And this leads to someone rediscovering the same old “new and novel” solutions

to the same old problems about every five years, solutions that can often be found in

the older literature.

Palladium and TCPA (and Linux and *BSD) continue to rediscover solutions that have

been found before, in systems such as KVM/370,3 Multics, SCOMP, and KSOS.

To understand KSOS and its place, you need to understand the time and background

of its creation. It was the late 1970s and TOPS-10, TWENEX (later TOPS-20), UNI-

VAC EXEC 8, OS/360, and Multics were the denizens of this new thing called the

ARPANET. The ARPANET backbone ran at 56Kbps and connected about 100 comput-

ers. There was also this new upstart thing that people were beginning to play with

called UNIX, “6th Edition.” It ran on these new 16-bit mini-computers from Digital

Equipment, PDP-11s. Big ones, with 512K of core or semiconductor memory and

20MB washing machine drives. Programs were limited by the hardware to 64K bytes

total or 64K instructions and 64K data, using split instruction and data addresses.

SPLIT I/D was ugly. Don’t ask. If you were there, I’m sorry to have reminded you.

There was a lot of interest in computer security. The government needed to process

classified information, and computers were still expensive enough that they needed to

be shared. There was lots of interest in allowing data at different classifications to be

processed on the same computer at the same time, without “spilling” data across secu-

rity levels.

the kernelized
secure operating
system (KSOS)

KSOS ●

by Tom Perrine

Tom Perrine is the
Manager of Security
Technologies at the
San Diego Super-
computer Center,
where his job des-
cription is “protect
the privacy and intel-
lectual property of
our users.” Involved
with computer secu-
rity since the ‘80s, he
was a Multician, has
testified to Congress
concerning Carni-
vore, and studies
computer security
technology and how
it relates to people
and public policy.

tep@ARPA.NET

1. The best current online information about
Multics (Multiplexed Information and Com-
puting Service) can be found at http://www.
multicians.org/.

2. The following online entry has most of the
story right. The main mistake is the claim that
Multics had no database and no transaction
processing. Other than that, it’s pretty on target:
http://wombat.doc.ic.ac.uk/foldoc/foldoc.
cgi?GCOS.

3. “KVM/370 in Retrospect,” 1984 IEEE Sympo-
sium on Security and Privacy: http://www.
computer.org/proceedings/sp/0532/05320013abs.
htm.

http://www
http://wombat.doc.ic.ac.uk/foldoc/foldoc
http://www

Vol. 27, No. 6 ;login:38

The “Orange Book” hadn’t been written yet. The experiences from developing Multics,

SCOMP, and KSOS substantially influenced4 the content of the Orange Book.5 “Hack-

ers” were still people who were curious about computers and wrote interesting code,

mostly at MIT and Stanford AI Lab.

A few years earlier, in 1973, the seminal report on computer security – the “Anderson

Report”6 – had been published for the US Air Force. This report called for better soft-

ware design practices, better programming languages, and something new called a

“security kernel.” It also suggested using formal mathematical models to prove that the

kernel would operate correctly. This paper also, almost as an afterthought, described

what we now call “automated intrusion detection” and noted that a primary way to

compromise an operating system was to exploit “insufficient argument validation.”

Yes, the Anderson Report described buffer overflows as a proven penetration method

and ways to avoid them 30 years ago. We’ve obviously come a long way since then. So

far that we need Palladium and TCPA.

The Anderson Report also cited an obscure little paper: “Notes on Structured Pro-

gramming” by Edsger Dijkstra. This was about the same time that he wrote a letter to

the Journal of the ACM, “Goto considered harmful.” Strangely enough, it was the day of

the Palladium/TCPA panel that we learned of his death. His two papers jump-started

the entire structured programming movement of the 1970s and 1980s.

At about the same time (1973), a DoD-inspired mandatory formal security model was

developed by Bell and LaPadula working at Mitre. This model formalized the DoD

classification system into a set of mathematical rules called “mandatory access con-

trols.” The idea was that the site policy would override any “discretionary access con-

trols” – that is, people could not give away data to unauthorized people. One rule

(“simple security”) prohibited data at a “higher” level from being read by a process at a

“lower” level. Another rule (“*-property”) prohibited a process at a “higher” level from

writing to “lower” level data.

People started to design and develop “security kernels.” These were small, well-defined

cores upon which an OS could be written that would be small and “verifiable” using

formal methods. This gets around the problem that verification methods and human

minds weren’t ready to deal with analyzing very complex systems. The idea was to con-

centrate all the security features, and only the security features, into a small kernel that

would provide the base upon which a secure OS could be layered. This was imposing

“least privilege” on the operating system itself, allowing the operating system to have

bugs and yet not be able to compromise security. In 1976, Peter Neumann and others

at SRI proposed “pSOS,” a provably secure operating system.

In 1978, Neumann, John Nagle, and others at Ford Aerospace started work on a more

ambitious project, which was actually expected to produce a running, practical, usable

system, the Kernelized Secure Operating System (KSOS). Neumann went on to

become the editor of Risks Digest, among many other projects. Nagle later worked in

networking, producing Nagle’s algorithm for merging tiny packets for TCP perfor-

mance, which was published in RFC 896 and is part of every modern TCP/IP stack.

KSOS was intended to be a security kernel upon which a UNIX-like operating system

could be built. It was recognized that the V6 UNIX kernel, at 10,000 lines of code7 and

48(!) system calls, was much too big(!) to be formally specified or verified.

4. Jeff Makey, private communication. Jeff was
an editor of the original Orange Book while at
the National Computer Security Center.

5. Department of Defense, Trusted Computer
System Evaluation Criteria: http://www.radium.
ncsc.mil/tpep/library/rainbow/5200.28-
STD.html.

6. J.P. Anderson, Computer Security Technology
Planning Study, ESD-TR-73-51, ESD/AFSC,
Hanscom AFB, Bedford, MA (Oct. 1972) [NTIS
AD-758 206]: http://seclab.cs.ucdavis.edu/
projects/history/seminal.html.

7. The “infamous”“Lions book,” an annotated
display of the UNIX V6 kernel for PDP-11,
shows about 9000 lines of code, in 44 source
files, including the .h files. Again available in
print (after being quashed by AT&T in the sev-
enties): John Lions, Lion’s Commentary on the
UNIX 6th Edition with Source Code (San Jose,
CA: Peer-to-Peer Communications), 1996,
ISBN 1-57398-013-7.

http://www.radium
http://seclab.cs.ucdavis.edu/

39December 2002 ;login:

8. Perrine, Codd, Hardy, “An Overview of the
Kernelized Secure Operating System (KSOS),”
Proceedings of the 7th DoD/NBS Computer
Security Conference, September 24–26, 1984:
http://users.sdsc.edu/~tep/Presentations/
Overview_Paper.text.

●
SE

C
U

R
IT

YBut by building a smaller security kernel that would implement the security features, a

UNIX-compatible layer could be built on top of that “micro-kernel” that would pro-

vide a UNIX-compatible system-call interface. The micro-kernel approach lived on in

later OSes such as MACH.

It was amusing to me that during the Palladium/TCPA panel, when asked about

improving the quality of the operating system so that Palladium would be less neces-

sary, the Microsoft speaker scoffed at “fixing millions of lines of code,” implying that

the OS was just too big to be written properly. Perhaps they need to “invent” least priv-

ilege and “micro-kernels” again!

But back to KSOS. First, the security kernel itself was designed and specified. The ker-

nel was modeled as a finite-state machine, and the system calls were defined in terms

of the state transitions that could occur. It was decided that by defining an initial

known secure state, and then checking all possible state transitions (system calls) to

make sure that they led to a known secure state, the kernel would be “verified.” The

design was documented and specified in the SPECIAL specification language. The ker-

nel specification was considered manageable because there were only 32 kernel calls.

The kernel specification was examined using the Boyer-Moore theorem prover. The

prover, which ran on a fairly large DEC 20, was eventually able, with extensive human

assistance, to prove enough of the theorems to provide a significant level of assurance

of “correctness.” In this context, this means that the kernel specification contained no

explicit violations of the Bell-LaPadula model, no “covert channels” or ways for data to

be implicitly shared across mandatory access boundaries. Note that even with only 32

system calls, the specification had to be split into five pieces, which were separately ver-

ified. This verification allowed KSOS to be considered a candidate for an “A1” rating,

“verified design,” the highest Orange Book rating.

KSOS was implemented in a higher-level language, Modula-2. Think of the type safety

of Pascal, with the package constructs of Ada or C++ (years before either language was

designed). User programs could be written in Modula-2 or C. KSOS was not self-

hosted; programs had to be compiled under V6 UNIX and copied to the KSOS system.

KSOS had some other interesting features for its time, such as multiple virtual termi-

nals per real terminal (think of Linux virtual consoles), and a “trusted path” from the

terminal into the security kernel. When a user hit the “secure attention” key (such as

BREAK), all user programs were suspended and disconnected from the user’s termi-

nal. The terminal was connected straight to the kernel. This was to avoid applications

from impersonating trusted applications or the kernel’s authentication (login) or pass-

word change functions.

KSOS also implemented “shared memory segments,” typed files, and what could be

considered network firewall features – all before Berkeley completed 4.2BSD.

In 1981, KSOS development moved to Logicon in San Diego, where it was further

enhanced and later served as the platform for several Navy and Air Force operational

systems, such as ACCAT GUARD and USAFE GUARD. These systems used KSOS-

hosted applications to provide multi-level secure application gateways on very secure

DoD networks. The “final” version of KSOS for PDP-11 is described in Perrine, Codd,

and Hardy,8 which also includes some information about ACCAT GUARD.

KSOS ●

http://users.sdsc.edu/~tep/Presentations/

Vol. 27, No. 6 ;login:

Later, KSOS was ported to the VAX and became KSOS-32. That project was canceled,

along with many other DoD computer security projects, in September 1988, shortly

after the first user login was achieved.

Although KSOS (and SCOMP and Multics) made significant advances in computer

security and software design methodologies and helped us to understand the problem

of software quality and assurance, they have been mostly forgotten. These OSes, and

their contemporaries, provided many features and services that are continually redis-

covered or even “invented” every few years for new operating systems. Palladium and

TCPA are just the most recent efforts to cover the same ground. In Orange Book

terms, they are trying to go “beyond A1” into “trusted hardware,” without first getting

to B-level software architecture.

It may be that UNIX came along and swept up a new generation, and the “old skool”

operating systems and their “old guard” were not able to pass along the accumulated

knowledge. It may be that so many of the older papers and research and real-world

experience are not available online and, hence, not findable with a quick Google

search. Or it may be that the computer science and engineering curricula aren’t cover-

ing the history of computing at all, let alone the history of secure computing. What-

ever the reasons, we’re losing a lot of time and energy rediscovering technology and

re-visiting the same failed solutions over and over again.

40

