o
® O Il. THE MAGAZINE OF USENIX & SAGE
’ . October 2002 volume 27 « number 5

inside:
PROGRAMMING
McCluskey: C99 and Compatibility

USENIX & SAGE

The Advanced Computing Systems Association &
The System Administrators Guild

20

C99 and compatibility

by Glen
McCluskey

Glen McCluskey is a
consultant with 20
years of experience
and has focused on
programming lan-
guages since 1988.
He specializes in Java
and C++ perfor-
mance, testing, and
technical documen-
tation areas.

glenm@glenmccl.com

In previous columns, we've looked at some of the new
features in C99, the standards update to C. In this pre-
sentation we'll discuss compatibility and look at issues
with mixing C89 (the previous C standard) and C99
code. We'll also look at compatibility between C99 and
C++.

C99 and C89

Let’s start by stating what is probably obvious: if you use new
C99 features in your C programming, you should not expect

your programs to compile with an older C89 compiler. Here’s
an example:

#include <stdio.h>

struct A {
int x;
inty;

L

struct Aa = {
.y =37
X =47

}

int main()

{
printf("%d\n", a.x);

}

This program uses the designator feature of C99. When | com-
pile the program as C89, the result is:

"ela.c’, line 9: error: expected an expression

y =37
N
"ela.c", line 10: error: expected an expression
X =47
AN

2 errors detected in the compilation of "ela.c".

Another example is the use of interspersed declarations and
statements:

#include <stdio.h>

int main()
{

int x;

x = 37;

inty;

y =47;

printf("%d %d\n", x, y);
}

This feature was borrowed from C++ and added to C99.

You can't use C99 features with a C89 compiler, but what about
going the other way? What happens if you try to compile a C89
program with a C99 compiler?

For example, consider the following program:
#include <stdio.h>

int main()
{
static x = 37;
x = g(x);
printf(“"%d\n", x);
}

int glint x)
{
return x + 10;

}

This usage is legal C89, but not C99. The declaration:
static x = 37;

leaves off the type (int), and the statement
x = g(x);

calls an undeclared function. The C99 standard tightened up
both of these areas. Requiring that a function be declared before
use catches a certain class of errors, such as passing a wrong
argument type.

Another example of valid C89 usage that is invalid C99 con-
cerns the use of keywords. For example, restrict is a C99 key-
word, so this program is no longer legal:

#include <stdio.h>
int restrict = 37,

int main()

{
printf("%d\n", restrict);
}

Vol. 27, No. 5 ;login:

Other new keywords include inline, _Bool, _Complex, and
_Imaginary. There are also many new library functions, which
may conflict with existing functions in C89 programs.

A third example is failure to specify a return value:

int f()
{

return;

}

int main()
{
}

This is valid C89 but invalid C99.

Beyond a few areas like this, C89 programs should work with a
C99 compiler.

C99 and C++

The C++ language was designed on a C base, and in the early
days there was emphasis on trying to keep C++ compatible
with C, so that C programs could be compiled as C++ code.
Since that time, C and C++ have both diverged and converged,
and compatibility between them is a complicated issue.

The first point is similar to what we said above about using C99
features with a C89 compiler. There are a great many C++ fea-
tures that have no equivalent in C99. One example is the C++
template feature:

#include <cstdio>
using namespace std;

template <class T>T min(T a, T b)
{
returna<b ?a:b;

}

int main()
{
int x = min(37 47);

printf("%d\n", x);
}

This usage has long been part of C++ but is unknown in C.
Another example is function overloading:

#include <cstdio>
using namespace std,

void f(int i)
{

printf("f(int) called\n");
}

October 2002 ;login:

C99 AND COMPATIBILITY »

void f(double d)
{

printf("f(double) called\n");
}

int main()
{

1(37);
}

The specific f() to call is determined based on the argument
type. Again, there’s no C equivalent to this feature.

Just as there are C++ features not known to C, there are C99
features not part of C++. For example, C99 mandates a long

long type:
#include <stdio.h>
long long x = Oxfffffffffffffffull;

int main()
{

printf("%Ilu\n", x);
}

Many C++ compilers allow this feature, but if | compile the
code using strict conformance compiler options, the result is:

"eda.c", line 3: error: the type "long long" is nonstandard
long long x = Oxffffffffffffffull;
AN

"eda.c", line 3: error: the type "long long" is nonstandard
long long x = Oxfffffffffffftfull;
AN

2 errors detected in the compilation of "e4a.c".

Another example is the C99 predefined identifier feature, used
to obtain the name of a function at compile time:

#include <stdio.h>

void ()
{
printf("%s\n", __func__);

}

int main()
{

f();
}

C and C++ have diverged over the years, but they’ve also con-
verged in some areas. For example, the following code uses a
declaration within a for loop, and is now both legal C (C99)
and C++:

#include <stdio.h>
int main()

{

PROGRAMMING

21

22

for(inti=1;i<=10; i++)
printf("%d\n", i);
}

Likewise, this code uses //-style comments, an idea C99 bor-
rowed from C++:

// This is an example of C++-style comments.

int main()
{
}

Another area of incompatibility between C and C++ concerns
features that are part of both languages, but which have differ-
ent semantics. For example, both C and C++ support wide
character types, but in C, wchar_t is a typedef defined in a
header file, whereas in C++ it is a keyword. Based on this differ-
ence, the following code is valid C99, but not C++:

int wchar_t = 37;
int printf(const char*, ...);

int main()

{
printf("%d\n", wchar_t);
}

No header file is included in this program, so it’s perfectly okay
to use wchar_t as an identifier, assuming this is a C99 program.
If it's a C++ program, then wchar_t is a keyword, and the pro-
gram is invalid.

An additional example of different semantics concerns file stat-
ics:

#include <stdio.h>
static int x = 37;

int main()
{

printf("%d\n", x);
1

This code is legal C and C++, but the C++ usage is deprecated,
that is, there is a possibility that the code will not be valid at
some future time. The preferred C++ usage is unnamed name-
spaces:

#include <cstdio>
using namespace std;

namespace {
int x = 37;
}

int main()

{
printf("%d\n", x);
}

Whether this approach is really better than file statics obviously
depends on your particular biases.

Conclusions

Suppose that you are concerned about compatibility in a practi-
cal way. You might have a large body of C89 code that you are
thinking of migrating to C99. Or you might have some C code
that you want to compile as C++. What should you do?

It seems likely that current C compilers will be upgraded to
incorporate C99 features, and C99 is mostly compatible with
existing C89 code. C99 provides some attractive new features
that you might want to use. But if you care about compatibility
with C++, it’s not at all clear if and when C++ will incorporate
C99 features. And it seems very unlikely that C will ever adopt
many of the distinctive C++ features such as templates.

If you have a body of C code that you compile with a C++ com-
piler, some of the C99 features will help with compatibility: for

example, support for C++-style comments and for mixing dec-
larations and code.

Beyond these basic observations, there is really no alternative to
sitting down and identifying the underlying differences between
C and C++ and specifying some coding standards for use in
your project. For example, if you want to use wide characters in
your C application and compile the result with a C++ compiler,
then you need to know that C treats wchar_t as a typedef’d type
defined in a header, whereas C++ treats it as a keyword.

One Web page that discusses C/C++ differences can be found at
http://david.tribble.com/text/cdiffs.htm.

Vol. 27, No. 5 ;login:

http://david.tribble.com/text/cdiffs.htm.

