
THE MAGAZINE OF USENIX & SAGE
October 2002 volume 27 • number 5

The Advanced Computing Systems Association &

The System Administrators Guild

&

inside:
PROGRAMMING

Flynt: Generating Ethernet Packets

26 Vol. 27, No. 5 ;login:

This article is the first of a series on building network

and firewall testing and validation tools using Tcl, open

source packages, and some special-purpose hardware.

This time I will describe building and testing a Tcl exten-

sion for generating Ethernet packets. Subsequent arti-

cles will expand on techniques for using this and other

extensions.

When I’m building a firewall system I always worry about what
I might have missed. Did I install the new security patches in
the right places, define the rules correctly, leave no holes?

There are online services like http://scan.sygatetech.com/ that
will scan my system for common flaws, but that requires that I
put the system on the Net to test it.

SATAN or SAINT, for example, will check the system for a lot of
holes, but they don’t test all the firewall rules.

So, I decided to write my own firewall test framework and add
new tests as I find and need them.

The first thing I needed for this toolkit was some way to send
arbitrary IP packets, to confirm that things like packets on the
outside interface with inside addresses are blocked, malformed
packets are discarded, and so on.

A little Net searching found a few tools that would almost do
what I want. These tools include the Tcl extensions psh from
Sun and pkt from USC, and the programs mgen from the Naval
Research Laboratory and sendip from Project Purple.

After a little bit of looking, I decided to work with the libdnet
library, written by Dug Song (http://libdnet.sourceforge.net/).
The advantage of this package is that it has the low-level sup-
port I need, is currently supported, and has adequate documen-
tation.

The disadvantage is that it’s a C library, not a Tcl extension, but
that’s easily changed.

Tcl was designed to be easily extended. With just a few hours’
labor you can pick up a random library and generate the inter-
face code to use it as a Tcl extension. However, this does require
some knowledge of how Tcl extensions are constructed. Doing
this the first time can take closer to eight hours.

If you don’t feel like spending that much time and learning Tcl
internals, you can use the SWIG (SoftWare Interface Generator)
program to create the interface code for you (http://www.swig.org/).

SWIG was developed by David Beazley (beazley@cs.uchicago.edu)
to make his life easier while he was developing software at Los
Alamos. Even in its early forms the program was very useful.

I downloaded the version 1.3.13 for this work. SWIG’s built-in
support for structures and complex data types is constantly
improving. Some details described in this article may be differ-
ent on the version of SWIG you are using.

SWIG works by examining a definition file that describes the
functions and data structures in a library and generating some
C code to allow those functions to be loaded into a Perl,
Python, Tcl/Tk, Ruby, Guile, or MzScheme interpreter.

Generating a definition file is fairly simple. The basic format is
just a list of function declarations.

For example, if you have a file named fibon.c that contains this
Fibonacci function:

int fib (int i) {
if (i <= 1) {return 1;}

return fib(i-2) + fib(i-1);
}

it could be turned into a Tcl extension with this one-line defini-
tion file:

$> cat fibon.i
int fib(int i);

and this SWIG command line:

swig -tcl -module fib -prefix fib -namespace -v fibon.i

The -module fib argument defines the name for this module.
The module name can be defined on the command line (as
done here) or in the definition file, with the line %module fib.

The -prefix fib argument sets a value that will be used to prevent
command name collisions. When used with the -namespace
argument, SWIG will generate code to create the new com-
mands in the fib namespace. Placing the extension commands

generating ethernet packets
by Clif Flynt

Clif Flynt is president
of Noumena Corp.,
which offers training
and consulting ser-
vices for Tcl/Tk and
Internet applications.
He is the author of
Tcl/Tk for Real Pro-
grammers and the
TclTutor instruction
package. He has
been programming
computers since
1970 and a Tcl advo-
cate since 1994.

clif@cflynt.com

http://scan.sygatetech.com/
http://libdnet.sourceforge.net/
http://www.swig.org/

27GENERATING ETHERNET PACKETS ●

●

PR

O
G

RA
M

M
IN

G

October 2002 ;login:

in a namespace has become the preferred style for Tcl exten-
sions.

Running this SWIG command will create a wrapper file named
fibon_wrap.c, which can be compiled into a shared library with
a command line resembling this:

gcc -shared -L/usr/lib fibon_wrap.c fibon.o -o libfib.so

Once this is done, you can load the libfib.so library and use the
Fibonacci code in your Tcl scripts just as you would any other
Tcl extension.

load ./libfib.so
for {set i 1} {$i < 5} {incr i} {

puts "The Fibonacci series at level $i is [fib::fib $i]"
}

Unfortunately, most projects are a bit more complex than this.

One problem you run into is that C is a lower level language
than Tcl. The C compiler supports data structures that reflect
the organization of the data in physical memory, while the Tcl
interpreter insulates the programmer from the hardware.

The SWIG solution for this is to generate new Tcl commands
for creating and accessing C data structures. The new Tcl com-
mands to create a C data structure will allocate memory for the
data structure and return an identifier that Tcl scripts can use
to reference the structure. The Tcl script can then pass that
identifier to the interface for C functions that need to access the
data. As an added benefit, SWIG uses some magic naming con-
ventions to do runtime data checking, so you can’t accidentally
pass a structure of type a to a function expecting a structure of
type b.

You can create an extension with support for creating and using
C arrays by adding a little bit of code to the definition file.

The easiest way to do this is to use SWIG’s %inline directive.
This directive defines functions which should be both included
in the final wrapper and exposed to the SWIG parser and code
generator.

The SWIG documentation includes this example to show how
an array of doubles can be created and accessed:

// SWIG helper functions for double arrays
%inline %{
// Create a new array of doubles of a given length
double *new_double(int size) {

return (double *) malloc(size*sizeof(double));
}
// Delete an array of double
void delete_double(double *a) {

free (a);
}

// Retrieve the value of an element of the array
double get_double(double *a, int index) {

return a[index];
}
// Set the value of an element in the array
void set_double(double *a, int index, double val) {

a[index] = val;
}
%}

The new commands can be used like this.

Create an array of doubles
set squares [new_double 5]
Fill the array with the square of the index
for {set i 0} {$i < 5} {incr i} {

set_double $squares $i [expr $i * $i]
}
Invoke a library procedure that requires a
pointer to an array of doubles as an argument
foo $squares

Structures can be a bit more tricky to use but are very simple to
describe in the definition file. All you need to do is include the
C struct in the body or in an %inline section of the definition
file and SWIG will generate a set of interface functions and
include them in the Tcl extension.

For example, a structure like this:

struct arp {
unsigned char mac_address[6];
unsigned char ip_address[4];

}

can be accessed with a Tcl script by making a definition file that
looks like this:

%inline %{
// Define an ARP structure for Machine and IP address
struct arp {

unsigned char mac_address[6];
unsigned char ip_address[4];

}
// A helper utility to set values in an array of
// unsigned chars -
// copied from the array example

int unsigned_char_set (unsigned char *ar, \
int index, unsigned char val) {

ar[index] = val;
}
// A test function to display the contents of an
// arp structure

int showArp (struct arp *p) {
int i;
for (i=0; i<6; i++) {

28 Vol. 27, No. 5 ;login:

printf("0x%x ", p->mac_address[i]);
}
printf("\n");
for (i=0; i<4; i++) {

printf("0x%x ", p->ip_address[i]);
}
printf("\n");

}
%}

When SWIG processes this code, it creates these new Tcl
commands:

::fib::new_arp Allocates memory for a new arp
::fib::arp structure and returns the name to

the Tcl script that invokes it.

::fib::delete_arp Frees the memory associated with an
arp structure

::fib::arp_ip_address_get Returns a handle to access the
ip_address C array element of the
arp structure.

::fib::arp_mac_address_get Returns a handle to access the
mac_address C array element of the
arp structure.

::fib::showArp An interface into the showArp C
function.

::fib::unsigned_char_set An interface into the
unsigned_char_set C function to
assign values to elements in a C
array.

The Tcl code to test this resembles the following:

set arp [arp::new_arp]
set mac [arp::arp_mac_address_get $arp]
for {set i 0} {$i < 6} {incr i} {

arp::unsigned_char_set $mac $i $i
}

set ip [arp::arp_ip_address_get $arp]
for {set i 0} {$i < 4} {incr i} {

arp::unsigned_char_set $ip $i $i
}

arp::showArp $arp

The body of a definition file can usually be extracted from an
include file. If you are lucky, you can just use the package’s pri-
mary include file as a definition file.

The dnet.h file has too much information that’s not relevant to
creating a wrapper (and is confusing to the SWIG parser), so the
simple solution of using dnet.h as a definition file didn’t work.

However, all the critical pieces of information (the functions,
declarations, and structures used as arguments) are described in
the man page, so a set of cut-and-paste operations will create a
minimal definition file.

To ensure portability across different word-size machines, the
libdnet package uses several data types that aren’t part of the
basic C language. The SWIG parser doesn’t recognize these new
datatypes. The SWIG solution for unrecognized data types is to
consider them to be pointers.

However, the SWIG parser will recognize a #define or typedef
directive to define these datatypes. Adding these lines to the def-
inition file satisfies the SWIG parser:

typedef unsigned short uint16_t;
typedef unsigned char uint_8_t;
typedef unsigned int uint_32_t;
typedef unsigned int ip_addr_t;
typedef unsigned int size_t;

To finish the dnet.i definition file, I added versions of the C
array access code described above to handle arrays of uint_32_t,
uint_16_t, and uint_8_t data.

Once the definition file is complete, SWIG can create a Tcl
extension in seconds. The next step is to test the new extension
and see if it works.

One of the features of the libdnet library is the ability to send
raw packets over the Ethernet. This is as low-level as you can
get, and will let me generate whatever type of malformed IP
packet I need.

The two critical commands are eth_open, to open a connection
to an Ethernet device, and eth_send, to transmit a buffer of
binary data (an Ethernet frame).

Syntax: eth_t *eth_open(const char *device);

Open a connection to an Ethernet device and
return a handle for future use.

char *device The name of the Ethernet device to be con-
nected to, such as eth0, pn0, etc.

Syntax: ssize_t eth_send(eth_t *e, const void *buf, size_t len);

Transmit a buffer of data over the Ethernet.
The buffer should be a valid Ethernet frame.
Returns the number of bytes sent. The check-
sum will be appended automatically.

eth_t *e The handle returned by eth_open

void *buf The data to send over the link

size_t len The number of 8-bit characters to transmit

29

●

PR

O
G

RA
M

M
IN

G

October 2002 ;login:

One problem is that eth_send requires that the buf buffer be a
pointer to an area of memory. A Tcl string won’t be accepted by
the SWIG wrapper. Fortunately, the SWIG wrapper’s data valid-
ity checking will accept any pointer as a void pointer, so we can
use the uint_8_t array commands to create and fill an array of
unsigned chars.

Simple code like this will generate garbage packets on the local
Ethernet. The data is illegal Ethernet frames, which aren’t
accepted by other nodes on the network, but running the script
will cause the activity lights on an interface card to blink,
demonstrating that frames are being sent.

Load the new extension
load ./libdnet.so
Open a connection to the Ethernet device
set e [dnet::eth_open eth1]
Create a buffer
set buf [dnet::new_uint_8Array 60]
Stuff the buffer with incrementing values
for {set i 0} {$i < 60} {incr i} {

dnet::set_uint_8Array $buf $i $i
}
And shove it onto the wire 10 times
for {set i 0} {$i < 10} {incr i} {

dnet::eth_send $e $buf 60

Pause for 100 milliseconds
after 100

}

The next step is to send a legal packet and see if it’s recognized.

An Ethernet frame consists of five fields of data:

Field size Description
(bytes)

6 The destination MAC address.

6 The source MAC address.

2 A type definition. This is 0x0800 for IP
datagrams.

46–1500 The datagram.

4 A Cyclic Redundancy Checksum.

The arp -a command gave me a list of IP addresses and corre-
sponding MAC addresses to fill in the source MAC address and
destination MAC address fields; the type field for an IP data-
gram is 0x0800, and the CRC will be appended by the transmis-
sion code.

To generate a valid IP datagram, I used tcpdump with the -x
option to get a hex dump of an IP packet. I decided to ping the

target node from the node running the Tcl script and grab one
of those packets. Using an Echo Request packet provides two
sets of validation. Using tcpdump, I can watch the packet arrive
on the target node, and I can also see if the target machine
responds to the fabricated ping request.

Tcl has full support for operating with lists of data. It makes
sense to treat a packet as a Tcl list of hex values until it needs to
be converted to an array of unsigned chars for the eth_send
command.

The code below creates an Ethernet frame from the various
pieces of data. It uses the split command, to convert a colon-
delimited MAC address into a list of hex bytes, and the eval
command, to combine two lists into a single list.

The Tcl split command will split string data into a list.

Syntax: split string ?splitChars?
split Splits a string into a list. Elements are delim-

ited by a marker character.

string The string to split.

?splitChars? A string of characters to mark elements. By
default the markers are whitespace characters
(tab, newline, space, carriage return). In this
example, the character to split on is the colon
separating the bytes in a MAC address.

The eval command concatenates the arguments into a string
before starting the evaluation. This causes a set of data to lose
one level of data grouping. Without eval, a command like lap-
pend list $list2 would be evaluated as lappend list {a b c}, which
will append the list element {a b c} to a list. The command eval
lappend list $list2 would be evaluated as lappend list a b c,
which will append three list elements, a, b, and c to a list.

This script will generate an Ethernet frame and transmit it to
the local network:

The MAC address, obtained with arp -s
set destEther 00:E0:4C:00:14:4D
set srcEther 00:A0:CC:D1:B6:00
A valid echo request packet,
obtained with tcpdump
set echo_Request [list 45 00 00 54 00 00 40 00 40 01 \

05 16 c0 a8 5a 40 c0 a8 5a 02 08 00 98 d9 \
df 22 00 00 63 cf 4d 3d d5 f3 0e 00 08 09 \
0a 0b 0c 0d 0e 0f 10 11 12 13 14 15 16 17 \
18 19 1a 1b 1c 1d 1e 1f 20 21 22 23 24 25 \
26 27 28 29 2a 2b 2c 2d 2e 2f 30 31 32 33 \
34 35 36 37]

Fill a list with hex values
set packet [split $destEther :]
eval lappend packet [split $srcEther :]

GENERATING ETHERNET PACKETS ●

30 Vol. 27, No. 5 ;login:

lappend packet 08 00
eval lappend packet $echo_Request
How many bytes are we using?
set len [llength $packet]
Create a C array and fill it.
set buf [dnet::new_uint_8Array $len]
for {set i 0} {$i < $len} {incr i} {

dnet::set_uint_8Array $buf $i 0x[lindex $packet $i]
}
And shove it onto the wire 10 times
for {set i 0} {$i < 10} {incr i} {

dnet::eth_send $e $buf $len

Wait 100 milliseconds between frames
after 100

}

This extension provides a platform for generating IP packets.
The next article will start describing techniques for validating
the packet generator before using the generator to validate
another system.

USENIX and SAGE Need You
People often ask how they can contribute to our organizations. Here is a list of tasks for which we hope to find
volunteers (some contributions not only reap the rewards of fame and the good feeling of having helped the community, but
authors also receive a small honorarium). Each issue we hope to have a list of openings and opportunities.

The SAGEwire and SAGEweb staff are seeking:

■ Interview candidates
■ Short article contributors (see http://sagewire.sage.org)
■ White paper contributors for topics like these:

Back-ups Emerging technology Privacy
Career development User education/training Product round-ups
Certification Ethics SAGEwire
Consulting Great new products Scaling
Culture Group tools Scripting
Databases Networking Security implementation
Displays New challenges Standards
E-mail Performance analysis Storage
Education Politics and the sysadim Tools, system

■ Local user groups: If you have a local user group affiliated with USENIX or SAGE, please mail the particulars to
kolstad@sage.org so they can be posted on the Web site.

;login: is seeking attendees of non-USENIX conferences who can write lucid conference summaries. Contact Tina Darmohray,
tmd@usenix.org, for eligibility and remuneration info. Conferences of interest include (but are not limited to): Interop, SOSP,
O’Reilly Open Source Conference, Blackhat (multiple venues), SANS, and IEEE networking conferences. Contact login@usenix.org.

;login: always needs conference summarizers for USENIX conferences too! Contact Alain Hénon, ah@usenix.org, if you’d like to
help.

http://sagewire.sage.org

