
44	 ; LO G I N : VO L . 3 4, N O. 6

D a v i d N . B l a n k - Ed e l m a n

practical Perl
tools: essential
techniques
David N. Blank-Edelman is the director of
technology at the Northeastern University
College of Computer and Information Sci-
ence and the author of the O’Reilly book
Automating System Administration with
Perl (the second edition of the Otter book),
available at purveyors of fine dead trees
everywhere. He has spent the past 24+ years
as a system/network administrator in large
multi-platform environments, including
Brandeis University, Cambridge Technology
Group, and the MIT Media Laboratory. He
was the program chair of the LISA ’05 confer-
ence and one of the LISA ’06 Invited Talks
co-chairs.

dnb@ccs.neu.edu

E v e r y o n c e i n a w h i l e i n t h i s c o l -
umn I like to get meta. In the past we have
talked about ways to become better pro-
grammers. We’ve looked at tools and meth-
odologies like test-first programming which
force you into a working style that produces
better programs. For this column, I’d like to
share three tools that can help you become
a better, or at least a more efficient, Perl
programmer in particular. So, perhaps this
month, we’ll go half-meta.

Being Strict

I know that some percentage of my readership is
going to roll their eyes with such vigor that you
can hear the noise they make in their sockets, but
I must start with this tip. So go ahead, get it out of
your system now because I’m going to say it:

 use strict;

The eye rolling comes because the Perl commu-
nity has been chanting “use strict;! use strict;! use
strict;!” to itself like some scene from Eyes Wide
Shut for many, many years now. When you turn
strict on for a program, the Perl interpreter will
complain about a whole host of potential issues
with your program that go a bit beyond syntax
errors. The complaints range from simple things
such as

Name $blah used only once: possible typo

if a variable only appears once in a program (for
example, it is set, but never read from—that’s often
a sign that there’s a typo in the name) to more so-
phisticated warnings such as

Global symbol $blah requires explicit package name

which are trying to strong-arm you into using local
variable scopes (since larger programs that use all
global variables are fragile and easily broken).

The reason I mention this tip at all, given how per-
vasive it is in the community, is that I know it took
me a while to get “use strict;” religion. I suspect
there are others who have lapsed in the same man-
ner. I think there are two main reasons why people
get turned off early in their programming career by
this pragma and never really come back to using it
as a matter of course (i.e., circumstances don’t de-
mand otherwise):

It yammers so. Sometimes people new to the 1.	
language get overwhelmed by the quantity of
error messages, especially the more cryptic ones.

; LO G I N : D ecem b e r 20 0 9	p r ac ti c al Pe rl tool s : esse ntial tech ni qu es	 45

This turns them off early in their Perl programming learning curve, and
they never really gain a desire to be yelled at by the interpreter (“Thank
you, Sir, may I have another error message? Thank you, Sir. May I have
another?”). The good news is that Perl developers have worked diligently
over the years to make the production of the error messages smarter and
the messages themselves more comprehensible. There is also a perldiag
documentation section (perldoc perldiag) that provides at least a smidgen
more information for every single error message the core Perl interpreter
might emit, thus making them more helpful. If you shied away from strict
mode before for this reason, I’d encourage you to try it again and see if it
works better for you.

Some of the error messages that 2.	 strict mode emits require the spankin’
new programmer to understand some programming concepts that may
initially be beyond their comprehension. I’m thinking specifically of the
scoping-related error message I mentioned before of Global symbol $blah
requires explicit package name, which comes up a great deal in first-effort
programs. The perldiag reference page I mentioned before says this about
it:

Global symbol “%s” requires explicit package name
(F) You’ve said “use strict” or “use strict vars”, which indicates that all vari-
ables must either be lexically scoped (using “my”), declared beforehand using
“our”, or explicitly qualified to say which package the global variable is in (using
“::”).

It is a very direct and pointed explanation with a teaser about how you
might fix the problem, but it only describes one or two trees of the for-
est the programmer is likely to be lost in at that point. If you aren’t familiar
with lexical and global scoping in programs or are just not clear on Perl’s
particular way of manifesting these concepts, getting a bunch of these error
messages is not going to help much even with this explanation. There’s not
a lot I can suggest for this case except that the programmer find a text that
explains “my”, “local”, and “our” in a way that makes sense to them before
starting to use strict mode.

Before we move on I just want to mention a couple of ways that the “use
strict;” idea has been extended:

The module Acme::use::strict::with::pride describes itself as performing this 3.	
service: “enforce bondage and discipline on very naughty modules” and
says:

using Acme::use::strict::with::pride causes all modules to run with use strict;
and use warnings;

Whether they like it or not :-)

In general I don’t advocate forcing your choices about how strict a program-
mer should be on others, but perhaps you have a reason to make sure all of
the code you are running passes a “use strict;” test.

There are modules like Tie::StrictHash which allow you to subvert the 4.	
usual auto-vivification nature of hashes (i.e., if you reference a hash key
that didn’t exist before, perhaps because of a typo, it comes into being
whether you wanted that to happen or not). As the docs say:

Tie::StrictHash is a module for implementing some of the same semantics
for hash members that use strict gives to variables. The following con-
straints are applied to a strict hash:

No new keys may be added to the hash except through the add method ■■

46	 ; LO G I N : VO L . 3 4, N O. 6

of the hash control object.
No keys may be deleted except through the delete method of the hash ■■

control object.
The hash cannot be re-initialized (cleared) except through the clear ■■

method of the hash control object.
Attempting to retrieve the value for a key that doesn’t exist is a fatal er-■■

ror.
Attempting to store a value for a key that doesn’t exist is a fatal error.■■

This sort of discipline can be helpful in all sorts of situations.

Being Tidy

Let’s leave all of that kink-themed programming discussion behind for the
moment and move on to the question of why your parents were always after
you to clean your room. You may have ignored the tool we’re going to talk
about in this section because it seemed like an aesthetic nicety, but I hope to
convince you otherwise. There’s a lovely module called Perl::Tidy that comes
with a command-line tool called “perltidy.” perltidy takes in your code and
reformats it to match a set of predefined (by you) stylistic conventions.
It’s similar to the C program source formatting called “indent” but custom
honed for Perl source code. Perl code that has been run through perltidy
looks neater and (depending on your stylistic preferences) more readable.
Given that Perl is a bit of a punctuation parking lot with a not quite de-
served reputation (from those who have never seen APL) of looking like line
noise, this can be a considerable improvement.

Let’s look at perltidy in action so I can explain why you should be running
all of your code through it even during the process of writing it. Here’s an
example from the perltidy home page (http://perltidy.sourceforge.net/) that
shows the most dramatic sort of improvement:

%TV=(flintstones=>{series=>”flintstones”,nights=>[qw(monday thursday
friday)],
members=>[{name=>”fred”,role=>”lead”,age=>36,},{name=>”wilma”,role=
>”wife”,
age=>31,},{name=>”pebbles”,role=>”kid”,age=>4,},],},jetsons=>{series=>”j
etsons”,
nights=>[qw(wednesday saturday)],members=>[{name=>”george”,role=>”le
ad”,age=>41,
},{name=>”jane”,role=>”wife”,age=>39,},{name=>”elroy”,role=>”kid”,ag
e=>9,},],},
simpsons=>{series=>”simpsons”,nights=>[qw(monday)],members=>[{name
=>”homer”,
role=>”lead”,age=>34,},{name=>”marge”,role=>”wife”,age=>37,},{name=>
”bart”,
role=>”kid”,age=>11,},],},);

run through perltidy becomes this:

%TV = (
 flintstones => {
 series => “flintstones”,
 nights => [qw(monday thursday friday)],
 members => [
 {
 name => “fred”,
 role => “lead”,
 age => 36,

; LO G I N : D ecem b e r 20 0 9	p r ac ti c al Pe rl tool s : esse ntial tech ni qu es	 47

 },
 {
 name => “wilma”,
 role => “wife”,
 age => 31,
 },
 {
 name => “pebbles”,
 role => “kid”,
 age => 4,
 },
],
 },
 jetsons => {
 series => “jetsons”,
 nights => [qw(wednesday saturday)],
 members => [
 {
 name => “george”,
 role => “lead”,
 age => 41,
 },
 {
 name => “jane”,
 role => “wife”,
 age => 39,
 },
 {
 name => “elroy”,
 role => “kid”,
 age => 9,
 },
],
 },
 ...
);

Hopefully you don’t have to look at code (from other people, right?) that
looks like the “before” in this example. But if you do get code from a col-
league that isn’t that easy to read, perltidy can help.

But this isn’t the kind of result that makes perltidy essential. Here is a more
interesting example:

sub hooberbloober {

 if (test_something()){
 if ($fred == 3){
 check_with_Shiva();
 # ... lots of code		
 }}
 # ... lots of code
 do_the_dance_of destruction();
 # ... lots of code
 spin_the_wheel();
}

48	 ; LO G I N : VO L . 3 4 , N O. 6

Why is this interesting? It helps demonstrate two reasons why you should
hook perltidy into your editor (all of the major ones can do it) so you can
run perltidy over code as you write it.

First, there’s a class of errors that we have all run into at one time or another
having to do with improperly placed closing brackets. It is especially easy to
do in cases where the chunks of your code spans multiple screens. We have
all had to debug code whose program flow didn’t quite work as we antici-
pated because a section of code was put in or left out of a conditional block
by mistake. In that last example, maybe we only wanted to do_the_dance_
of_destruction() based on one of the conditional tests. If there was lots more
ancillary code in our example, it might not be easy to see that we’ve closed
an if() block prematurely. But if we run it through perltidy, the error jumps
right out thanks to the reformatted indentation:

sub hooberbloober {

 if (test_something()) {
 if ($fred == 3) {
 check_with_Shiva();
 # ... lots of code
 }
 }
 do_the_dance_of destruction();

 # ... lots of code
 spin_the_wheel();
}

Second, there’s considerable value to always looking at and working with
clean-looking code. It has a subtle but powerful effect on how you work.
Here’s a quote from an invited talk I gave at LISA ’07 on what sysadmins
could learn from professional cooks and others in the cooking world:

I worked with a chef who used to step behind the line to a dirty cook’s
station in the middle of the rush to explain why the offending cook was
falling behind. He’d press his palm down on the cutting board, which was
littered with peppercorns, spattered sauce, bits of parsley, bread crumbs
and the usual flotsam and jetsam that accumulates quickly on a station if
not constantly wiped away with a moist side towel. “You see this?” he’d
inquire, raising his palm so that the cook could see the bits of dirt and
scraps sticking to the chef’s palm, “That’s what the inside of your head
looks like now. Work clean!”

	 —Anthony Bourdain in Kitchen Confidential

perltidy does an excellent job of helping you find small errors not caught by
the interpreter’s syntax checks and work clean.

Being Critical

OK, last tool. If you liked how “use strict;” provided feedback about prob-
lems with your code, then you are going to love this. Perl::Critic, and its ac-
companying command-line program perlcritic, goes even further in this
direction. The documentation describes it as:

an extensible framework for creating and applying coding standards to Perl
source code. Essentially, it is a static source code analysis engine. Perl::Critic
is distributed with a number of Perl::Critic::Policy modules that attempt to
enforce various coding guidelines. Most Policy modules are based on Damian
Conway’s book Perl Best Practices. However, Perl::Critic is not limited to PBP

; LO G I N : D ecem b e r 20 0 9	p r ac ti c al Pe rl tool s : esse ntial tech ni qu es	 49

and will even support Policies that contradict Conway. You can enable, disable,
and customize those Polices through the Perl::Critic interface. You can also cre-
ate new Policy modules that suit your own tastes.

While I wouldn’t necessarily run perlcritic over my code as often as I would
perltidy, it is definitely helpful to periodically feed your code to perlcritic as
you go along. To give you an idea of how it works, here’s some output when
run over some sample code found in this very column from 2006:

$ perlcritic geocode.pl:
Code before strictures are enabled at line 5, column 5. See page 429 of PBP.
(Severity: 5)

The error here is I’ve not included (for space reasons) “use strict;” in my
code. If I pick some other code I wrote back in 2005, it tells me about more
interesting errors:

 chart.pl: Bareword file handle opened at line 20, column 1. See pages
202,204 of PBP. (Severity: 5)
 chart.pl: Two-argument “open” used at line 20, column 1. See page 207 of
PBP. (Severity: 5)

It’s complaining about this line in the code:

open (T,”>/tmp/t.png”) or die “Can’t open t.png:$!\n”;

which is using conventions that have since fallen out of favor. A better way
to write that would be:

open my $T, ‘>’, ‘/tmp/t.png’ or die “Can’t open t.png:$!\n”;

which passes perlcritic (with the default rules) with flying colors.

But the default settings for perlcritic only show the most flagrant violations.
If I crank that up to 11 (or, rather, to a severity level of “brutal”), I get these
errors from that one line:

Code is not tidy at line 1, column 1. See page 33 of PBP. (Severity: 1)
RCS keywords Id not found at line 1, column 1. See page 441 of PBP.
(Severity: 2)
RCS keywords $Revision$, $HeadURL$, $Date$ not found at line 1, column 1.
See page 441 of PBP. (Severity: 2)
RCS keywords $Revision$, $Source$, $Date$ not found at line 1, column 1.
See page 441 of PBP. (Severity: 2)
No “$VERSION” variable found at line 1, column 1. See page 404 of PBP.
(Severity: 2)
Close filehandles as soon as possible after opening them at line 1, column 4.
See page 209 of PBP. (Severity: 4)
Module does not end with “1;” at line 1, column 4. Must end with a recogniz-
able true value. (Severity: 4)
Code not contained in explicit package at line 1, column 4. Violates encapsula-
tion. (Severity: 4)
Code before strictures are enabled at line 1, column 4. See page 429 of PBP.
(Severity: 5)
Code before warnings are enabled at line 1, column 4. See page 431 of PBP.
(Severity: 4)
Magic punctuation variable used in interpolated string at line 1, column 41. See
page 79 of PBP. (Severity: 2)
Found “\N{SPACE}” at the end of the line at line 1, column 65. Don’t use
whitespace at the end of lines. (Severity: 1)

and that’s just with the default module rules. There are many other
Perl::Critic::* modules on CPAN that can add even more or different fussi-

50	 ; LO G I N : VO L . 3 4, N O. 6

ness. Clearly, much of what it is complaining about can be ignored (since I
was only testing a single line), but in real life cases perlcritic often offers re-
ally helpful criticism. If you want to play with Perl::Critic without installing
the module, some people in the Perl community have been kind enough to
set up a Web site (http://perlcritic.com) that will audit your code for you re-
motely.

All three of the tools we’ve looked at in this column can, in the right mea-
sure, really help improve your Perl programming. Enjoy, and I’ll see you
next time.

