
THE MAGAZINE OF USENIX & SAGE
August 2002 volume 27 • number 4

The Advanced Computing Systems Association &

The System Administrators Guild

&

inside:
PROGRAMMING

McCluskey: Wide Characters

12 Vol. 27, No. 4 ;login:

wide characters

We’ve been looking at some of the new features in

C99, the standards update to C. In this column we’ll

consider features added to the language and library in

support of wide characters, as typically used with for-

eign languages.

Character Sets
Several terms are used in the standard to describe C character
sets. The first of these is “basic character set” and refers to a set
of single-byte characters that all C99 implementations must
support. Roughly speaking, this character set is 7-bit ASCII
without some of the control characters. It consists of printable
characters like A–Z and 0–9, along with tab, form feed, and so
on.

The basic character set is divided into source and execution
character sets, and these differ slightly. For example, the basic
execution character set is required to have a null character (\0),
used as a string terminator.

The extended character set is a superset of the basic character
set, and adds additional locale-specific characters. It, too, is
divided into source and execution character sets.

A wide character is a character of type wchar_t, and is capable
of representing any character in the current locale. In other
words, a wide character may be a character from either the basic
character set, such as the letter A, or a character from the
extended character set.

Wide Character Constants
Let’s look at some actual examples of wide character usage. The
first demo program prints the size of wchar_t on your local sys-
tem:

#include <stdio.h>
#include <wchar.h>

int main()
{

printf("sizeof(wchar_t) = %u\n", sizeof(wchar_t));
}

When I run this program on my Linux system, the result is:

sizeof(wchar_t) = 4

wchar_t is a signed or unsigned integral type big enough to
hold all the characters in the local extended character set, and is
a 32-bit long on my system.

wide character constants are specified similarly to normal char-
acter constants, with a preceding L before the constant:

#include <stdio.h>
#include <wchar.h>

int main()
{

wchar_t wc1 = L'a';
printf("%lx\n", wc1);

wchar_t wc2 = L'\377';
printf("%lx\n", wc2);

wchar_t wc3 = L'\x12345678';
printf("%lx\n", wc3);

}

When I run this program, the result is:

61
ff
12345678

In the first two cases, the wide character is stored in the least
significant byte of the long, while in the last case, all four bytes
of the long are used to represent a single wide character.

This example illustrates a confusing point about wide charac-
ters – the idea of multiple representations. For example, wc3 is
initialized with a wide character constant, a constant that
requires 13 bytes to express in the source program. The con-
stant itself is stored in four bytes during execution (in a 32-bit
long). And a little later on, we’ll see examples of what is called
“state-dependent encoding,” a mechanism used to encode wide
characters as a stream of bytes (1–6 bytes per wide character, on
my system). This encoding is used for writing wide characters
to a file.

The term “multibyte character” is defined to be a sequence of
one or more bytes that represents a single character in the
extended source or execution environment. A character from
the extended character set can have several different representa-
tions. These representations may appear in source code, in the
execution environment, or in data files.

by Glen
McCluskey

Glen McCluskey is a
consultant with 20
years of experience
and has focused on
programming lan-
guages since 1988.
He specializes in Java
and C++ perfor-
mance, testing, and
technical documen-
tation areas.

glenm@glenmccl.com

13August 2002 ;login:

●

P

R
O

G
R

A
M

M
IN

GHere’s another example, showing how wide character strings are
specified:

#include <assert.h>
#include <wchar.h>

int main()
{

wchar_t* wstr1 = L"testing\x12345678";
wchar_t wstr2[] = L"testing\x12345678";

assert(*wstr1 == 't');
assert(*(wstr1 + 7) == 0x12345678);

assert(wstr2[0] == 't');
assert(wstr2[7] == 0x12345678);

}

String Operations
Many familiar operations are supported on wide character
strings. For example, here’s a demo that implements a function
to convert to lowercase:

#include <stdio.h>
#include <wchar.h>
#include <wctype.h>

wchar_t* tolower(wchar_t* str)
{

wchar_t* start = str;

// convert each wide character to lowercase

for (; *str; str++) {
if (iswupper(*str))

*str = tolower(*str);
}

return start;
}

int main()
{

wchar_t* str = L"TESTing";
wchar_t buf[8];

wcscpy(buf, str);

tolower(buf);

printf("%ls\n", buf);
}

Note that the definition of an uppercase character may be locale
specific.

Wide Characters and I/O
Suppose that you have a wide character string and you’d like to
write it to a file and then read it back. How can you do this?
Here’s one approach:

#include <assert.h>
#include <stdio.h>
#include <wchar.h>

int main()
{

// write a wide character string to a file

FILE* fp = fopen("outfile", "w");
assert(fp);
fwprintf(fp, L"string is\377: %ls\n", L"TESTing\x1234");
fclose(fp);

// read the characters of the string back from the
// file

fp = fopen("outfile", "r");
assert(fp);
wint_t c;
wchar_t buf[25];
size_t len = 0;
while ((c = getwc(fp)) != WEOF)

buf[len++] = c;
fclose(fp);
buf[len] = 0;

// check results

if (wcscmp(buf, L"string is\377: TESTing\x1234\n")
== 0)

printf("strings are equal\n");
else

printf("strings are unequal\n");
}

Much of this code is identical to what you would use when
reading and writing regular strings of bytes.

wint_t is a type that is related to wchar_t in a way similar to the
relationship between int and char; it can hold all possible
wchar_t values, as well as one distinguished value that is not
part of the extended character set (WEOF).

The only other tricky thing in this example is stream orienta-
tion, something that’s implicit in the code. A file stream can be
either byte or wide oriented. The orientation is determined by
the first operation on the stream, or explicitly via the fwide()
call. Since the first write operation in the demo is fwprintf(), and
the first read operation is getwc(), and these are wide character
functions, the streams are marked as having wide orientation.

Why does stream orientation matter? The reason is that an
encoding may be applied to wide characters written to a file.
Suppose you are programming with wide characters, you need
to do wide character I/O, and your wide characters are four
bytes long when using the wchar_t representation. One way of
writing such characters to a file is to actually write four bytes
for each character.

WIDE CHARACTERS ●

Vol. 27, No. 4 ;login:14

But what happens if, most of the time, the values of your wide
characters are within the range of 7-bit ASCII? In such a case,
three zero bytes will be written for each character. And the
resulting files will not be readable by tools that expect ASCII.
This problem exists today, for example, with tools that write 16-
bit Unicode to a file. One solution to this problem is to encode
characters such that 7-bit ASCII is represented as itself, that is, a
single byte, while other character values are encoded using mul-
tiple bytes.

But if an encoding is applied, then it no longer makes sense to
mix byte and wide-file operations. This is especially true given
that an encoding may be state dependent, and dipping into a
byte stream in the middle of a multiple-byte encoding of a wide
character has no meaning.

Encodings
Let’s look a little deeper into the encoding issue, with another
example. This demo converts wide character values into
sequences of encoded bytes:

#include <stdio.h>
#include <stdlib.h>
#include <wchar.h>

int main()
{

char buf[MB_CUR_MAX];
int n;

// convert a single-byte character to a multibyte
// character

n = wctomb(buf, L'a');
printf("len = %d\n", n);
for (int i = 0; i < n; i++)

printf("%hhx ", buf[i]);
printf("\n");

// convert another single-byte character

n = wctomb(buf, L'\377');
printf("len = %d\n", n);
for (int i = 0; i < n; i++)

printf("%hhx ", buf[i]);
printf("\n");

// convert a wide character

n = wctomb(buf, L'\x12345678');
printf("len = %d\n", n);
for (int i = 0; i < n; i++)
printf("%hhx ", buf[i]);
printf("\n");

}

The output is:

len = 1
61
len = 2
c3 bf
len = 6
fc 92 8d 85 99 b8

The character a is encoded as itself, while the character \377 is
encoded as two bytes 0xc3 and 0xbf. The constant
L’\x12345678’, internally represented as a four-byte long, is
encoded using six bytes.

Here’s another example of encoding and decoding:

#include <stdio.h>
#include <stdlib.h>
#include <wchar.h>

int main()
{

char buf[MB_CUR_MAX];
wchar_t wc1 = L'\x12345678';
wchar_t wc2;
int n, nn;

// convert a wide character to a multibyte
// character

n = wctomb(buf, wc1);
printf("%d\n", mblen(buf, n));

// reverse the process

nn = mbtowc(&wc2, buf, n);

// check result

if (wc1 == wc2 && n == nn)
printf("equal\n");

else
printf("unequal\n");

}

The wctomb() function encodes a wide character into a stream
of bytes, and mbtowc() reverses the process.

Restartable Functions
Consider the second part of the last example. The processing of
the first part of the example – a wide character encoded into a
buffer of one or more bytes – was reversed, by taking the buffer
and converting it back into a wide character.

In a real-world example, things might not be quite as simple.
For instance, you might have an application where bytes are
coming in across a network one at a time, and several of the
bytes put together represent a wide character. You’d somehow
like to keep track of the state of the decoding as each byte

15August 2002 ;login:

●

P

R
O

G
R

A
M

M
IN

Gcomes in, and when a valid wide character is detected, process
it.

As part of support for wide characters, C99 has a set of what are
called restartable functions. The idea is that you initialize a state
object used to keep track of the encoding or decoding state, and
then you pass this object to the functions. Let’s see how this idea
works in practice:

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <wchar.h>

int main()
{

// convert a wide character into a byte stream

char buf[MB_CUR_MAX];
wchar_t wc1 = L'\x12345678';
int len = wctomb(buf, wc1);
printf("len = %d\n", len);

// initialize mbstate_t object

wchar_t wc2;
mbstate_t mbstate;
memset(&mbstate, 0, sizeof(mbstate_t));
size_t retval;

// convert the first len - 1 bytes of the byte stream

retval = mbrtowc(&wc2, buf, len - 1, &mbstate);
printf("retval = %d\n", retval);

// convert the last byte of the byte stream

retval = mbrtowc(&wc2, &buf[len - 1], 1, &mbstate);
printf("retval = %d\n", retval);

// compare with original

if (wc1 == wc2)
printf("equal\n");

else
printf("unequal\n");

}

In the first part of the example, a wide character is encoded into
a stream of bytes. We then initialize an mbstate_t object and
convert the stream of bytes back to a wide character. But in the
first call to mbrtowc(), we omit the last input byte, implying that
the conversion cannot be completed during this function call.
The state object captures an intermediate state of conversion.
The state object is then passed to the second mbrtowc() call, and
the conversion is completed.

The result of running the demo is:

len = 6
retval = -2
retval = 1
equal

The initial -2 return value from the first mbrtowc() call indicates
that a valid partial encoded wide character was found in the
input byte stream.

Wide character support is especially useful if you’re working
with foreign languages. C applications often assume English
and ASCII are being used, and the wide character type and
library functions add support for other character sets.

WIDE CHARACTERS ●

