
THE MAGAZINE OF USENIX & SAGE
August 2002 volume 27 • number 4

The Advanced Computing Systems Association &

The System Administrators Guild

&

inside:
PROGRAMMING

Turoff: Practical Perl

16 Vol. 27, No. 4 ;login:

practical perl
Programming with Iterators

Most programs deal with examining a sequence of val-

ues at some point. In this column, we investigate itera-

tors, a way to simplify processing of a computed

sequence of values. We conclude by revisiting a com-

mon problem: parsing a configuration file, this time by

using iterators.

Introduction to Iterators
I recently worked on a project where I needed to use the iterator
design pattern. Design patterns are common structures and
behaviors that occur frequently in many programs and are used
across programming languages and application domains. The
iterator pattern describes a behavior where an object offers
sequential access to a data structure composed of many individ-
ual elements.

Iterators are more common in strongly typed programming
languages. Java, for example, contains an Iterator interface as
part of the core language definition. Classes that use this inter-
face provide next() and hasNext() methods to enable programs
to examine a series of values sequentially, one at a time. One
particularly interesting use of iterators involves traversing a
binary tree. One way to examine each node in the tree would be
to code up a breadth-first traversal algorithm every time you
need it. An easier way to examine the tree is to make successive
calls to a next() method to retrieve each item from the tree in
the proper order.

You may not have heard about iterators before just because
they’re not particularly necessary in Perl. Because Perl has a
generic list data type already, there isn’t a pressing need to cre-
ate generic interfaces or design patterns to access list-type
objects in a sequential manner.

Here are a few common examples of how iterators are com-
monly used in Perl. Built-in operators like foreach, map, and

grep can work with any kind of data in a list, because lists are
generic containers:

foreach (@ARGV) {
process items in a list

}
transform a list of values
into a list of squares
my @squares = map {$_ ** 2} 1..10;
reduce a list of files
to a list of writable files
my @writable = grep {-w $_} </htdocs/*>;

Iterating over the lines in a file using a while loop is another
common technique:

while (<FILE>) {
process each line of FILE

}

Recall that foreach will examine lists one element at a time, but
while loops execute until the test condition evaluates to false.
That’s why the while(<FILE>) idiom is shorthand for this con-
struct:

while (defined($_ = <FILE>)) {
process each line of FILE

}

The point here is that a line is read from FILE each time the
block is executed. Looking at the while loop this way shows that
we’re not examining a sequence of values in a list, but examin-
ing a sequence of values generated dynamically. It just so hap-
pens in this case that these computed values are lines from a
file. We could just as easily iterate over a series of rows coming
from a database query using the DBI module:

use DBI;
my $dbh = DBI->connect("dbi:SQLite:dbname=my_data", "", "");

my $sth = $dbh->prepare("SELECT * FROM books");
$sth->execute();
while (my @row = $sth->fetchrow_array()) {

... process each row
}

Iterators in Perl
In order to iterate over a sequence of computed values (like the
ones returned by <FILE> or $sth->fetchrow_array()), it is neces-
sary to return a series of values followed by some false value
when the sequence is exhausted. One easy way to signal the end
of a sequence is to return undef or an empty list. This is suffi-
cient when examining a series of strings (lines from a file), a
series of lists (rows from a database), or a series of numbers.

Generating a sequence of computed values involves maintain-
ing some state variables so we can tell when the sequence is

by Adam Turoff

Adam is a consultant
who specializes in
using Perl to manage
big data. He is a long
time Perl Monger, a
technical editor for
The Perl Review, and
a frequent presenter
at Perl conferences.

ziggy@panix.com

17August 2002 ;login:

●

P

R
O

G
R

A
M

M
IN

Gexhausted. This is generally done with an object, but it can also
be done with a closure. Closures are anonymous subroutines
that maintain some private-state variables. They’re like objects,
except that they’ve been turned inside out. Where objects are
pieces of data (like a hash) with some subroutines attached, clo-
sures are subroutines with some data attached.

Here is a function that creates closures, each of which will count
from 1 to 10:

sub make_counter {
my $i = 1;
return sub {
return if $i > 10;
return $i++;
}

}

In this example, a new variable $i and a new anonymous sub are
created each time we call make_counter. Each closure we create
maintains its own private value for $i. We can then call the clo-
sure 10 times to get the values 1 through 10. After that, we’ll
always return a false value. This satisfies the requirements for an
iterator, so we read values from it one at a time, almost as if it
were a file:

my $iterator = make_counter();

while(defined($_ = $iterator->())) {
print; ## 12345678910

}

Combining Iterators
The iterators that are created by make_counter() are very simple
and may not seem very worthwhile at first. But it is easy to
combine iterators to produce more interesting results. Here is
an iterator that filters values from our simple counter iterator
and emits only the odd values:

sub odd_numbers {
my $next = shift;
return sub {
my $i = $next->();
while (defined($i) and ($i % 2) == 0) {

$i = $next->();
}
return $i;
}

}

my $iter = make_counter();
my $odd = odd_numbers($iter);

while (defined($_ = $odd->())) {
print; ## 13579

}

First, we ask for a value from the iterator $odd. Within $odd’s
closure, we ask for a value from its $next iterator until we find
an odd value or the end of $next’s sequence of values. The
result, as expected, is a sequence of odd values from 1 to 10.

This example shows another property of closures. Not only do
closures turn objects inside out, but they turn logic inside out as
well. Instead of skipping even values within the while loop, we
weed them out beforehand, simplifying the while loop down to
a single statement.

Note that we created the $odd iterator by modifying another
iterator. This process can be extended, transforming a sequence
of odd numbers into a sequence of odd numbers squared:

sub make_squares {
my $next = shift;
return sub {
my $i = $next->();
return unless $i;
return $i ** 2;
}

}

my $iter = make_counter();
$iter = odd_numbers($iter);
$iter = make_squares($iter);

while (defined($_ = $iter->())) {
print;

}

We can go even further, adding another filter to transform this
sequence of odd numbers squared into a running total of odd
numbers squared, a running average of odd numbers squared,
or something entirely different. No matter how we build the
iterators up, the process of examining the final result remains
the same: a simple while loop.

Parsing Configuration Files
Now that you understand the basic ideas behind iterators, it’s
time for a more practical example: parsing a configuration file.
Let’s start with a few simple requirements:

■ Configuration files consist of a series of name-value pairs
and are stored in a hash.

■ Comments start with the # character and continue until
end-of-line; all comments should be ignored.

■ Lines consisting of nothing more than space characters
should be ignored.

The first few requirements seem simple enough to implement
with a standard while loop. It might look something like this:

PRACTICAL PERL ●

Vol. 27, No. 4 ;login:18

while (<CONFIG>) {
s/#.*$//; ## delete comments until end-of-line
skip blank lines
while (m/^\s*$/) {

$_ = <CONFIG>;
}

my ($name, $value) = m/^(.*?)=(.*?)$/;
$config{$name} = $value;

}

If you look closely, there are some bugs caused by the inner
loop. Only the first line’s comments are deleted; after we’ve
found a blank line (or a line with nothing but a comment), then
the next non-blank line’s comment will be kept. There are a lot
of ways to fix this bug. If we had used iterators, these bugs
would be easier to avoid.

First we need to read lines from a file using an iterator. Once
that is done, we can then transform that stream of values by
stacking one iterator on top of another until we’re left with a
stream of name-value pairs:

sub make_file_iterator {
my $filename = shift;
open(my $fh, $filename);
return sub { return scalar <$fh>; }

}

sub strip_comments {
my $next = shift;
return sub {

my $line = $next->();
$line =~ s/#.*$//;
return $line;

}
}

sub skip_blanks {
my $next = shift;
return sub {

my $line = $next->();
while(defined ($line) && $line =~ m/^\s*$/) {

$line = $next->();
}
return $line;

}
}

my $config = make_file_interator("my.config");
$config = strip_comments($config);
$config = skip_blanks($config);

while (defined($_ = $config->())) {
process name=value pairs
my ($name, $value) = m/^(.*?)=(.*?)$/;
$options{$name} = $value;

}

In this example, we start with three generic subroutines that
create iterators. If another portion of our program needed to
skip blank lines or strip comments, we could reuse these sub-
routines to generate iterators for that task. This allows us to
maintain and debug code in one spot, rather than maintaining
and debugging a few repeated lines in many places.

Another benefit is that our main program consists of three lines
of initialization to set up the $config iterator, and a simple while
loop that only sees valid values and operates on them. As
requirements change over time, this main loop would need very
little modification. Most of the changes could be handled by
adding filters to the $config iterator to perform more pre-pro-
cessing.

Conclusion
Iterators are a very powerful construct for processing a series of
values. The kinds of iterators described here use closures for a
simple and effective way to create and transform a series of val-
ues generated one at a time. Iterators simplify programming by
separating out the pre-processing from the main processing for
a series.

