
THE MAGAZINE OF USENIX & SAGE
August 2002 volume 27 • number 4

The Advanced Computing Systems Association &

The System Administrators Guild

&

inside:
PROGRAMMING

Flynt: The Tclsh Spot

19August 2002 ;login:

●

P

R
O

G
R

A
M

M
IN

G

One of the most useful features of modern GUIs is the

little pop-up help window. Whenever I end up with a

new application, and no time to actually read a manual,

I’ll let the cursor rest on a bizarrely named button and

hope I get a hint for what it will do.

Tk does not include a pop-up help widget as one of the basic
widgets, but one can be created with just a few lines of code.
The help balloon described in this article was submitted to the
Tcler’s Wiki by Daniel Steffen (http://www.maths.mq.edu.au/
~steffen/tcltk).

The code for a help balloon is fairly short, but not trivial. Creat-
ing a help balloon requires interacting with a several aspects of
the window manager and Tk interpreter, and it’s not always
obvious how to gain access to the feature you need. Knowing
what types of information are controlled by the window man-
ager, and which are controlled by the Tk interpreter makes it a
bit easier.

The first trick with a help balloon is that we need to know when
the cursor has entered a window that has a help balloon associ-
ated with it.

Tcl handles linking an action to an event with the bind com-
mand. The bind command links a Tcl script to a window and
event. When that window has focus, and that event occurs, the
registered script will be evaluated.

The command looks like this:

Syntax: bind window event script
This causes script to be evaluated if event occurs while window
has focus.

window The name of the window to which this script will be
bound

event The event to use as a trigger for this script

script The script to evaluate when the event occurs

The events that will trigger evaluating the script are defined as
zero or more modifiers, followed by an event-type descriptor,
followed by a detail field. You must have at least a type or detail
field in the event descriptor. Depending on the event, more
fields may be required. The fields can be separated by white-
space or dashes.

The event types include all the events supported by the X Win-
dow System:

Activate Enter Map
ButtonPress, Button Expose Motion
ButtonRelease FocusIn MouseWheel
Circulate FocusOut Property
Colormap Gravity Reparent
Configure KeyPress, Key Unmap
Deactivate KeyRelease Visibility
Destroy Leave

A simple event would be something like <H>, which would
trigger on someone typing an uppercase H. In this case the
event descriptor is just a detail field, with an implicit type of
KeyPress.

The detail field describes the event in more detail. For example
<KeyPress-H> would also describe the event when someone
types an uppercase H, and <ButtonPress-1> describes the event
when someone clicks the leftmost button.

The modifier field adds information about events that must
happen simultaneously (like Control, Alt and Delete being held
down together), or sequentially, like mouse double clicks.

Modifiers include Control, Shift, Lock and Alt, to describe a key
that must be depressed when the event occurs, or Double, Triple,
and Quadruple to describe how many times the event must
occur: <Double-ButtonPress-1> describes the event when some-
one double-clicks the left mouse button. We could watch for
someone triple-clicking while holding the Control key with
<Triple-Control-ButtonPress-1>.

To make a help balloon, we want to know when the cursor
enters or leaves a widget. The Enter and Leave events are gener-
ated when a cursor enters or leaves a widget, so a pair of lines
like the following would display and destroy a balloon when the
cursor enters and leaves a widget named .needsHelp:

bind .needsHelp <Enter> "create Balloon"
bind .needsHelp <Leave> "destroy Balloon"

the tclsh spot
by Clif Flynt

Clif Flynt is president
of Noumena Corp.,
which offers training
and consulting serv-
ices for Tcl/Tk and
Internet applications.
He is the author of
Tcl/Tk for Real Pro-
grammers and the
TclTutor instruction
package. He has
been programming
computers since
1970 and a Tcl advo-
cate since 1994.

clif@cflynt.com

THE TCLSH SPOT ●

http://www.maths.mq.edu.au/

Vol. 27, No. 4 ;login:20

Since a help balloon should appear below the widget that it
relates to, the code that will create a balloon needs to know
where that window is. Though the window name sounds like a
line from a bad fantasy novel, knowing it allows you to learn its
location.

The bind command will let us pass certain runtime values to the
script that is evaluated when the event occurs. These values are
defined in the script as a percent-item, which will be substituted
for the actual value just before the script is evaluated.

The bind command supports many percent-items, including:

%b The number of the button that was pressed to generate
this event. Valid only for ButtonPress or ButtonRe-
lease.

%d The detail field from the event.
%h The height field from the event. Valid for Configure

and Expose.
%k The key that was pressed or released. Valid only for

KeyPress or KeyRelease.
%x %y The X or Y coordinates for the event. Valid for events

such as mouse events that have an X or Y field.
%R %S The root or subwindow identifier for the event.
%W The window for which this event is being reported.

The %W option lets us tie a help balloon to the window that
created it. A command to bind help-balloon creation to a
widget might look more like this:

bind .needsHelp <Enter>
"createBalloonProc %W $helpMessage"

Help windows should appear, not immediately, but a second or
two after the cursor enters a widget. This means we need to
have a way to schedule an event to occur in the future.

The Tcl after command enables a script to react to a timer event
or idle condition. This command has several subcommands
that will let an application interact with the queue of scripts
waiting for a chance to happen, but for a help balloon we only
need the simple form of:

Syntax: after milliseconds script

after Schedule a script to be processed in the
future.

milliseconds The number of milliseconds to pause the cur-
rent processing, or the number of seconds in
the future to evaluate another script.

script The script to be evaluated after the number of
milliseconds have elapsed.

Given a procedure to create the balloon named balloon:show,
the beginning of a procedure to add a help balloon to a widget
looks like this:

proc balloon {w help} {
bind $w <Enter>

"after 1000 [list balloon:show %W [list $help]]"

We can’t leave that balloon up forever, so we need to be able to
destroy the balloon when the cursor leaves the target widget.

The Tcl command to destroy a window is destroy.

Syntax: destroy windowName ?window2...?

Destroy one or more Tcl widgets.
windowName The name of the Tcl widgets to be destroyed.

We can decide to name the help balloon the .balloon child of the
window it relates to. This makes the entire balloon registration
procedure look like this:

proc balloon {w help} {
bind $w <Any-Enter>

"after 1000 [list balloon:show %W [list $help]]"
bind $w <Any-Leave> "destroy %W.balloon"

}

The balloon:show procedure will create and display the help
balloon. There are a few steps in this process.

1. Confirm that the cursor is still inside the window that is
associated with this help balloon.

2. Destroy any previous balloon associated with this window.
3. Create a new window with the appropriate text.
4. Map this window to the screen in the appropriate place.

Several of these steps require information from the window sys-
tem: finding the location of the cursor, the location of a widget,
etc.

Tk provides for interaction with a windowing system via two
commands: the winfo command that returns information about
the windows Tk controls, and the wm command that interacts
with the window manager.

These commands have many subcommands, most of which
aren’t needed for this application. I’ll just discuss a few of them
as they become necessary.

The first step, confirming that the cursor is still within the win-
dow, can be done with two winfo commands. The pointerxy
subcommand will return the coordinates of the cursor, and the
containing subcommand will return the name of a window that
encloses a pair of coordinates.

Syntax: winfo pointerxy window

Return the X and Y location of the mouse cursor.
These values are returned in screen coordinates, not
application window coordinates.

21August 2002 ;login:

●

P

R
O

G
R

A
M

M
IN

Gwindow The mouse cursor must be on the same screen as this
window. If the cursor is not on this screen, then the
coordinates will each be -1.

Syntax: winfo containing rootX rootY

Returns the name of the window that encloses the X
and Y coordinates.

rootX An X screen coordinate (0 is the left edge of the
screen).

rootY A Y screen coordinate (0 is the top edge of the screen).

The containing subcommand requires two separate arguments,
while the pointerxy returns a pair of arguments. If we tried to
write this code:

winfo containing [winfo pointerxy .]

the Tcl interpreter would throw an error.

The return from winfo pointerxy . would be substituted into the
command as a single unit. The command evaluated by the Tcl
interpreter would resemble:

winfo containing {120 300}

instead of

winfo containing 120 300

The solution to this is to use the eval command to evaluate the
string.

Syntax: eval string1 ?string2...?

Concatenate the arguments into a single string and
evaluate that string as a command.

string* Strings that will compose a command.

Because lists are concatenated onto the end of the previous
data, the eval command loses one level of grouping informa-
tion. If you need to maintain the grouping of some sets of data,
use the list command to make a list of it.

Using a string match command to compare the window that
currently has the cursor with the window that requested the
help balloon, we get code like this:

proc balloon:show {w arg} {
if {![string match [eval winfo containing

[winfo pointerxy .]] $w]} {
return

}

The next step is to destroy any previous existing balloon. This
might seem unnecessary – after all, a cursor has to leave one
window before it can enter another.

However, there are circumstances when a cursor can enter a sec-
ond window without leaving the first. For example, if one
widget is contained within another, the cursor can enter the
inner widget without leaving the outer widget.

The example below shows an unlikely example of this situation:

Create and display a canvas
canvas .c
pack .c

Create and display a label within the canvas
label .c.l -text label
.c create window 50 50 -anchor nw -window .c.l

Add bindings to report when the mouse enters
and leaves the windows.
bind .c <Enter> {puts {in .c}}
bind .c <Leave> {puts {out .c}}
bind .c.l <Enter> {puts {in .c.l}}
bind .c.l <Leave> {puts {out .c.l}}

As a mouse cursor enters the canvas, then the label, and then
leaves the label and canvas, the following output is generated:

in .c
in .c.l
out .c.l
out .c

To make the balloon help code a bit more readable, the name of
the new balloon help window is saved in the variable top.

If the window does not exist, it can’t be destroyed, and Tcl will
throw an error. A script can catch an error with the catch com-
mand, which will evaluate a script in a safe way, and return the
results and status of the script separately.

The syntax is:

Syntax: catch script ?varName?

The catch command returns the status from evaluating the
script, and optionally places the results of evaluating the script
in the variable varName.

In this case, we don’t need the results from the destroy, so we
can destroy any previous balloons associated with this window
with:

set top $w.balloon
catch {destroy $top}

The next step is to create the new window. Tcl supports two
types of windows:

■ Windows that are managed within a Tk window
■ Windows that are managed by the window manager

THE TCLSH SPOT ●

Vol. 27, No. 4 ;login:22

A window managed within a Tk window (like most buttons,
labels, scrollbars, etc. that your script creates) must fit within
the parent window. Windows that are managed by the window
manager (called top level windows) can appear anywhere on the
screen and may have decorative borders set by the window
manager.

For a help balloon, we want a top level window (in case the
widget this balloon is associated with is at the bottom corner of
the application), and we want the window to not have any deco-
rations. Our script will place a message widget inside this top
level to hold the help text.

The command for creating a new top level window is toplevel.

Syntax: toplevelwindowName ?-option value ...?

The options include setting the border width, relief, back-
ground, class, etc.

This application wants a very simple top level with a one-pixel-
wide border.

toplevel $top -borderwidth 1

A help balloon window should not have the decorations added
by the window manager – we don’t want the user to be able to
move this window, iconify it, etc. The decorations are added by
the window manager, not managed by Tk, so removing the dec-
orations is done with the wm command. The subcommand that
handles this is override-redirect.

Syntax: wm override-redirect windowName boolean

Sets the override-redirect flag in the requested
window. If true, the window is not given a
decorative frame and can not be moved by
the user. By default, the override-redirect flag
is false.

windowName The name of the window for which the
override-redirect flag is to be set.

boolean A boolean value to assign to the override-redirect flag.

The wm override-redirect command should be given before the
window manager transfers focus of a window. Unlike most
Tcl/Tk commands, you may not be able to test this subcom-
mand by typing commands in an interactive session.

The difference between override-redirect true and false looks
like this:

catch {destroy .t1 .t2}
toplevel .t1 -border 5 -relief raised
label .t1.l -text "Reset Redirect True"
pack .t1.l
wm override-redirect .t1 1

toplevel .t2 -border 5 -relief raised
label .t2.l -text "Default Redirect"
pack .t2.l

wm geometry .t1 +300+300
wm geometry .t2 +300+400

raise .t1
raise .t2

Creating the new top level and getting rid of the borders looks
like this:

toplevel $top -borderwidth 1
wm override-redirect $top 1

The next step is to add the help message. Tk supports three
widgets for displaying textual information:

label Displays a single line of text.
message Displays one or more lines of text.
text Displays one or more lines of text with sup-

port for editing, multiple fonts, tagged areas,
etc.

Any of these widgets could be used for the help message, but
the help message may be longer than can fit on a single line, and
the text widget is a bit heavyweight for this application. The
message widget combines some of the features of the text
widget and some features of the label widget, making it the best
widget for this application.

Syntax: message name ?options?

message Create a message widget.

name A name for the message widget. Must be a proper
window name.

?options? Options for the message include:

-text The text to display in this widget.
-textvar The variable which will contain the

text to display in this widget.
-aspect An integer to define the aspect ratio:

(Xsize/Ysize) * 100
-background The background color for this

widget.

When a widget creation command is evaluated, it returns the
name of the widget that was just created. This can be used with

override-redirect 1 override-redirect 0

23August 2002 ;login:

●

P

R
O

G
R

A
M

M
IN

Gthe geometry managers to make a single-command create and
display command like this:

pack [message $top.txt -aspect 200
-background lightyellow \
-font fixed -text $arg]

The final step is to place the new window just under the widget
that requested the help balloon.

The window that requests the help will be a window managed
by Tk, so we can use the winfo command to determine its
height and X/Y locations.

The subcommands for these data are:

winfo heightwinName Return the height of a window in
pixels.

winfo rootx winName Return the X location of this win-
dow in screen coordinates.

winfo rooty winName Return the Y location of this win-
dow in screen coordinates.

These two lines of code set variables for the X coordinate to be
the same as the left edge of the window requesting the help bal-
loon, and the Y coordinate to be just below that window.

set wmx [winfo rootx $w]
set wmy [expr [winfo rooty $w]+[winfo height $w]]<

Placing a top level window on the screen is a task for the win-
dow manager, so the wm geometry command gets used.

Syntax: wm geometry windowName ?geometry?

Query or set the geometry for a window.

windowName The name of the window to be queried or set.

?geometry? If this is present, it’s a geometry string follow-
ing the X windows convention of
widthxheight+/-Xposition+/-Yposition. The x
and + or - separators are required.

If this field is not present, the wm geometry
command returns the current geometry of
the window.

For most X Window window managers, we could just provide
the X and Y locations for the new window:

wm geometry $top +$wmx+$wmy

But, to be completely safe on multiple platforms, with different
window managers, we should provide a complete geometry
specification with the width and height of the window
included.

The requested width and height is known by the Tk interpreter,
and is returned by the winfo reqwidth and winfo reqheight
commands.

A better geometry command resembles this:

wm geometry $top \
[winfo reqwidth $top.txt]x[winfo reqheight

$top.txt]+$wmx+$wmy

The final step is to make sure the new window isn’t hidden
behind other windows. The raise command places one window
above another, or above all other windows, if no other window
is defined.

raise $top
}

Wrapping all these code fragments together, the balloon:show
procedure looks like this:

proc balloon:show {w arg} {
if {![string match [eval winfo containing

[winfo pointerxy .]] $w]} {
return

}
set top $w.balloon
catch {destroy $top}
toplevel $top -borderwidth 1 -background black
wm overrideredirect $top 1

pack [message $top.txt -aspect 200
-background lightyellow \
-font fixed -text $arg]

set wmx [winfo rootx $w]
set wmy [expr [winfo rooty $w]+[winfo height $w]]
wm geometry $top \

[winfo reqwidth $top.txt]x[winfo reqheight
$top.txt]+$wmx+$wmy

raise $top
}

This code, with a tweak for Macintosh platforms, is available at
http://mini.net/tcl/534.html.

THE TCLSH SPOT ●

http://mini.net/tcl/534.html

