
; LO G I N : D ecem b e r 20 0 9	 Pe te’s all th ing s Su n : swaddling appli c ation s in a secu rit y b lan k e t	 51

P e t e r B a e r G a lv i n

Pete’s all things Sun:
swaddling applications
in a security blanket

Peter Baer Galvin is the CTO of IT Architec-
ture for Corporate Technologies, a premier
systems integrator and VAR (www.cptech.
com). Before that, Peter was the systems
manager for Brown University’s Computer
Science Department. He has written articles
and columns for many publications and is
co-author of the Operating Systems Concepts
and Applied Operating Systems Concepts
textbooks. As a consultant and trainer, Peter
teaches tutorials and gives talks on security
and system administration worldwide. Peter
blogs at http://www.galvin.info and twitters
as “PeterGalvin.”

pbg@cptech.com

T h e I m m u ta b l e S e r v i c e C o n ta i n e r s
(ISC) project seeks to increase systemic se-
curity within Solaris. An ISC is a potentially
perfect locale in which to run applications
where increased security is desired. Within
the ISC ecosystem is the ability to clone ISCs
and reset them to a known good state, and
the potential for automatic actions in case
of a security incident. ISC is not currently
an integrated or support project, but it is
an important security step for Solaris and
therefore worth discussing even at this early
stage.

Immutable Service Containers

ISC currently consists of a plan and documents,
as well as the “OpenSolaris Immutable Service
Container construction kit” [1], a set of tools for
building ISCs within OpenSolaris. The project’s
goal is to go beyond OpenSolaris, creating, for ex-
ample, an ISC from a VirtualBox virtual machine.
Fundamentally, ISCs are a set of tools, steps, and
techniques that can be used to more securely run
applications in highly managed environments and
can be set up and used wherever the operating sys-
tem or virtualization tools provide the features re-
quired. According to their definition, “ISCs provide
a security-reinforced container into which a service
or set of services is deployed.”

The design goals for ISCs include limiting exposure
by reducing services and using resource controls
to run those that are required, limiting change by
making service and critical operating environment
configuration read-only, limiting rights based on
the least privilege model, and increasing integrity
by isolating the service for monitoring and enforce-
ment [2]. There are several benefits to deploying
infrastructure based on ISCs, including a more
secure starting point for deployment and man-
agement, automation of application deployment,
built-in best practice security aspects, decreased
chance of break-ins, decreased chance of damage
from a break-in, and more likely standardization of
security within the infrastructure.

The reasoning behind the ISC project is that, even
when the “right” steps to increase security are
known, they are infrequently followed and even
less frequently checked and updated. An ISC has
all of those right steps already integrated, easing
the effort needed to secure an application’s environ-
ment. Certainly the world would be a better place

52	 ; LO G I N : VO L . 3 4, N O. 6

if all applications were run in ISCs, but the first steps are designing, testing,
and documenting them. My hope for this column is that it brings attention
to ISCs and helps to encourage their propagation.

ISC is a core building block of some security initiatives at Sun and secu-
rity trends in general. It can be part of an adaptive security architecture
[3] which responds to threats quickly while minimizing potential damage.
Further, ISCs can be part of an autonomic security layer that can be self-
cleansing, self-updating, and can automatically roll back and quarantine its
components, even performing a self-assessment or self-destruction if needed.

The ISC Architecture consists of an ISC “dock” and the ISC itself. The dock
provides security enforcement, monitoring, resource controls, and other
management functions. It communicates via SSH to one or more ISCs. The
ISC consists of the security-hardened container (be it a Solaris container, a
virtual machine, or other similar structure), plus security functions.

Hands-on

Even though the ISC project states that it is more of a proof-of-concept than
a production-ready service, I thought it would be interesting to take the cur-
rent implementation for a test drive. Currently, ISCs can be implemented
on OpenSolaris via Solaris Zones (a.k.a. “containers”). Other options will be
possible in the future (as discussed in the next section). Implementation and
configuration of ISCs currently take a few steps, from downloading and run-
ning the scripts through editing firewall configuration files. The steps are
outlined in the project wiki [4], but I include them here and add some ex-
planation as well as some testing results. If you want to save some steps, you
can download a virtual machine image of OpenSolaris already configured
with an ISC.

The ISC description so far is certainly high on promise. Unless components
or implementations are released officially and supported by Sun, it will be
difficult to judge how effectively ISC meets its goals. The current pre-release
should give a good indication of how close ISCs are to production usability,
how easy they will be to operate, and how close they are to delivering on
their promise.

For the purposes of this column I tested the OpenSolaris V 1.0 preview of
ISC. At this point ISC is not even an OpenSolaris package. Rather, it’s avail-
able as a Mercurial (source code management) repository. I started from a
fresh copy of OpenSolaris 2009.06. For a shortcut, a prebuilt OpenSolaris
containing ISC and an ISC container can be downloaded in OVF format
and run as a VM guest inside of an OVF-format supporting virtual machine
manager (such as VirtualBox).

First, Mercurial must be installed, and the Mercurial repository containing
ISC downloaded:

opensolaris$ pfexec pkg install SUNWmercurial
. . .
opensolaris$ hg clone https://kenai.com/hg/isc-source isc
. . .

Next, the configuration script is run to modify the system and create an ISC:

opensolaris$ pfexec isc/bin/iscadm.ksh
Setting netmask of isc0 to 255.255.255.0
Installing SMF method: /lib/svc/method/svc-isc-enc-swap
Installing SMF manifest: /var/svc/manifest/site/isc-enc-swap.xml
Installing SMF method: /lib/svc/method/svc-isc-enc-scratch

; LO G I N : D ecem b e r 20 0 9	 Pe te’s all th ing s Su n : swaddling appli c ation s in a secu rit y b lan k e t	 53

Installing SMF manifest: /var/svc/manifest/site/isc-enc-scratch.xml
isc1: No such zone configured
Use ‘create’ to begin configuring a new zone.
A ZFS file system has been created for this zone.
 Publisher: Using opensolaris.org (http://pkg.opensolaris.org/release/).
 Image: Preparing at /export/isc/isc1/zone/root.
 Cache: Using /var/pkg/download.
Sanity Check: Looking for ‘entire’ incorporation.
 Installing: Core System (output follows)
DOWNLOAD	 PKGS	 FILES	 XFER (MB)
Completed	 20/20	 3021/3021	 42.55/42.55

PHASE	 ACTIONS
Install Phase	 5747/5747
 Installing: Additional Packages (output follows)
DOWNLOAD	 PKGS	 FILES	 XFER (MB)
Completed	 37/37	 5598/5598	 32.52/32.52

PHASE	 ACTIONS
Install Phase	 7329/7329

	 Note:	 Man pages can be obtained by installing SUNWman
	 Postinstall:	 Copying SMF seed repository ... done.
	 Postinstall:	 Applying workarounds.
	 Done:	 Installation completed in 373.243 seconds.

	 Next Steps:	 Boot the zone, then log into the zone console
		 (zlogin -C) to complete the configuration process
	 Global zone version:	 entire@0.5.11,5.11-0.111:20090514T145840Z
	Non-Global zone version:	 entire@0.5.11,5.11-0.111:20090514T145840Z
	 Evaluation:	 Packages in isc1 are in sync with global zone.
Attach complete.
	 Global zone version:	 entire@0.5.11,5.11-0.111:20090514T145840Z
	Non-Global zone version:	 entire@0.5.11,5.11-0.111:20090514T145840Z
	 Evaluation:	 Packages in isc1 are in sync with global zone.
Attach complete.

Installation transforms the OpenSolaris deployment from a general-use sys-
tem to a much more secured environment. Even the boot name changes.
The /etc/motd is changed to display a message about unauthorized use. And
the GUI login is disabled in favor of command-line interactions. Clearly this
should not be done on a desktop deployment of OpenSolaris—it’s all about
creating secure server environments in which to run services. A Solaris con-
tainer called “isc1” is preinstalled, with a default password of “iscroot” that
needs to be changed. Note that this is not a security hole, because there is
no way to connect to the container from outside the system until services
are enabled and the global zone is configured to allow communication to the
ISC.

A boot environment cache update and reboot gets the system ready for use:

opensolaris$ pfexec bootadm update-archive
opensolaris$ pfexec shutdown -g 0 -i 0 -y

Once an ISC container is built, it has many interesting aspects. For example,
the configuration is hardened, auditing enabled, and the stack set to non-
executable. Also, as well as the usual default container file systems, there
is a new /scratch one provided. This is a non-persistent encrypted file sys-
tem that applications can use to securely store log files, temporary files, and
other contents. Because ZFS does not yet implement encryption, there is

54	 ; LO G I N : VO L . 3 4 , N O. 6

some indirection involved in the implementation of the encrypted scratch
space. Essentially, a ZFS zvol (volume) is the core, and then a LOFI (loop-
back file system) is created with encryption enabled (using an ephemeral key
that will be lost when the system is shut down) and a zpool on top of that,
with the end result of exporting a file system that is encrypted:

root@isc1:~# df -kh
Filesystem	 size	 used	 avail	 capacity	 Mounted on
. . .
/scratch	 63M	 19K	 63M	 1%	 /scratch
. . .
pbg@opensolaris:~$ zfs list
NAME	 USED	 AVAIL	 REFER	 MOUNTPOINT
. . .
rpool/export/scratch	 300M	 3.31G	 19K	 /export/scratch
rpool/export/scratch/global	 100M	 3.31G	 19K	 /export/scratch/global
rpool/export/scratch/global/	 100M	 3.41G	 1.19M	 -
 scratch_file
rpool/export/scratch/isc1	 100M	 3.31G	 19K	 /export/scratch/isc1
rpool/export/scratch/isc1/	 100M	 3.41G	 1.19M	 -
 scratch_file	
scratch-global	 71.5K	 62.9M	 19K	 /scratch-global
scratch-isc1	 71.5K	 62.9M	 19K	 scratch-isc1
. . .
pbg@opensolaris:~$ zpool status -v scratch-isc1
	 pool:	 scratch-isc1
	 state:	 ONLINE
	 scrub:	 none requested
	 config:

	 NAME	 STATE	 READ	 WRITE	 CKSUM
	 scratch-isc1	 ONLINE	 0	 0	 0
	 /dev/lofi/3	 ONLINE	 0	 0	 0
pbg@opensolaris:~$ lofiadm
Block Device	 File	 Options
/dev/lofi/1	 /devices/pseudo/zfs@0:1c 	 Encrypted
/dev/lofi/2	 /devices/pseudo/zfs@0:2c,raw	 Encrypted
/dev/lofi/3	 /devices/pseudo/zfs@0:3c,raw	 Encrypted
/dev/lofi/4	 /devices/pseudo/zfs@0:5c,raw	 Encrypted

Once an ISC is created, applications can be installed and enabled within it.
From the ISC wiki comes the example of installing and enabling Apache:

opensolaris$ pfexec zlogin isc1 pkg install SUNWapch22
opensolaris$ pfexec zlogin isc1 svcadm enable apache22

Because the default is for no communication to be allowed to the ISC, the
firewall rules much be changed to allow communication. This is done by
editing /etc/ipf/ipf.conf and, if the IP address of the ISC guest is 192.168.0.1,
adding a line such as:

pass in quick on e1000g0 proto tcp from any to 192.168.0.1 port = 80 keep state

Because by default the ISC’s network is not accessible from outside the sys-
tem, a new NAT rule has to be put in place to route traffic that reaches the
system on port 80 into the ISC housing the Web server. Edit /etc/ipf/ipnat.
conf and add a line such as:

 rdr e1000g0 0.0.0.0/0 port 80 -> 192.168.0.1 port 80

; LO G I N : D ecem b e r 20 0 9	 Pe te’s all th ing s Su n : swaddling appli c ation s in a secu rit y b lan k e t	 55

For those commands to take effect, the firewall must be told to reload its
configuration files via:

opensolaris$ pfexec ipf -Fa -f /etc/ipf/ipf.conf
opensolaris$ pfexec ipnat -FC -f /etc/ipf/ipnat.conf

From a separate system, pointing a Web browser to the IP address of the
host containing the ISC should allow connection to the secure Web server
within the container.

The ISC infrastructure includes a new command-line script to manage and
modify ISCs. For example, to create a new ISC, say ISC 2, the command line
would be:

opensolaris$ pfexec isc/bin/iscadm.ksh -c -i -n 2

Currently, the iscadm script performs no other major actions. The plan is for
it to control the creation of snapshots, deletion of ISC environments, veri-
fication that an ISC environment has not been modified, and so on. Such
changes would be a welcome addition to the ISC functionality.

The Future

ISC is an active project with several steps likely in the future. Glenn Bru-
nette, a Sun Distinguished Engineer, is leading the charge on this project
and actively working on designing, implementing, and automating the cre-
ation of ISCs. Next steps potentially include the following areas:

Updates to take advantage of new OpenSolaris functionality as it is inte-■■

grated (such as ZFS encryption, Validated Execution, Always-On Auditing,
and other projects).
New reference configurations that can utilize VirtualBox as the containment ■■

model in place of OpenSolaris zones, allowing for the use of alternative
guest operating systems beyond OpenSolaris. (For now, the project will
likely continue with OpenSolaris as the host OS, due to the security feature
set it provides.)
New operational configurations that implement the autonomic security use ■■

cases [6].

The project is also giving consideration to more advanced configuration tools
that allow a user to create virtual ISC networks (using Crossbow) [7]. An-
other area of interest is migration and validation tools to help people move
their applications into ISCs and ensure that the security configuration is im-
plemented properly. And on the practical front, there are plans to have ISCs
available at some point on Amazon EC2 as an extension of Sun’s security-
enhanced OpenSolaris AMI efforts.

The project is also actively seeking input from Sun customers, which in turn
creates RFEs (requests for enhancement) that get put into the development
queue. If security is of interest at your site, downloading and using the cur-
rent toolset and giving feedback as to what works, what doesn’t, and what
features you would like to see should be on your to-do list.

For more information on the ISC project, including discussion forums,
publications, podcasts, and presentations, visit the project’s home at http://
kenai.com/projects/isc/pages/Home.

56	 ; LO G I N : VO L . 3 4 , N O. 6

Conclusion

ISC has lofty goals, and the current non-production implementation meets
quite a few of them. Assuming the project does move into production with
a complete feature set, ISCs will be a huge leap forward for cloud computing
and datacenter application deployment. Easy to use, high-potency security is
the nirvana data managers seek but frequently don’t find. ISCs could be one
of those rare exceptions.

references

[1] http://kenai.com/projects/isc/pages/OpenSolaris.

[2] http://kenai.com/projects/isc/pages/Architecture.

[3] Sun Adaptive Security Architecture Blueprint 820-6825.

[4] http://kenai.com/projects/isc/pages/OpenSolaris#Service_Installation
_and_Confi.

[5] http://kenai.com/projects/isc/downloads.

[6] http://kenai.com/projects/isc/pages/Autonomic.

[7] http://kenai.com/projects/isc/pages/Networking.

