®
® O Il. THE MAGAZINE OF USENIX & SAGE
’ ‘ August 2002 volume 27 « number 4

inside:
SECURITY
Farrow: Musings

USENIX & SAGE

The Advanced Computing Systems Association &
The System Administrators Guild

28

by Rik Farrow

Rik Farrow provides
UNIX and Internet
security consulting
and training. He is
the author of UNIX
System Security and
System Administra-
tor's Guide to System
V.

rik@spirit.com

musings

| often take a look at a past column before ramping up the old rant engine.
Exactly a year ago, | was complaining about how a default install of Linux
as workstation left your system wide open, with many unnecessary network
services running. Now, | can cheerfully report that the opposite is true, that
a more recent release of Linux (RedHat 7.2) not only left services disabled,
but also included optional installation of netfilter (http://netfilter.samba.
org), configured to protect your workstation. How nice.

Not that everything has come up roses. | also ranted (last year) about weaknesses in IE
and XP. These issues have not gone away. IE still continues to be exploited on a regular
basis. | have been getting several copies of the Klez worm, an Outlook virus, every day.
And | port scanned a default install of Windows 2000 Professional Server and found
that it had 25 TCP ports running services. This scan showed the simple services, good
for denial of service, the ever present SMB share everything services, plus some new
ones that are security related (Kerberos, Idapssl, and kpasswd5). Something shows up
at port 6666/tcp, nominally IRC, but | don’t believe that Win2K comes with IRC by
default.

I have a useful security suggestion and a rant for this month as well. First the sugges-
tion, then the rant.

Backfire

I spend a lot of time researching and thinking about attacks. The Honeynet Project
(http://project.honeynet.org) is a really great source for learning about opportunistic
attacks. Opportunistic attacks are those without any particular target in mind — any
vulnerable system will do. These usually come about through scanners running on
previously rooted boxes. The average length of time between when Project members
install a default configured system and it gets rooted appears to be two days, maybe
less. Something to think about, especially if you are in a network without any sort of
firewall or controlled update program.

The other really interesting thing is what attackers do when they root a UNIX/Linux
box. The standard sequence of events goes something like this:

1. Clean up signs of the attack.

2. Install new user accounts (one normal, one root).
3. Login via new user account, su root.

4. Download patches.

5. Download tools.

6. Install tools.

7. Logout.

The installation of patches really surprised me at first. Who would have thought that
attackers would be so kindhearted and altruistic as to patch the security hole just used
to root the box? The truth is much simpler — if the attacker got in this easily, so can
anyone else, so the box must be patched at once. If they don’t patch, someone else will
soon “own” the system.

The tools downloaded vary a lot. Commonly, rootkits get downloaded. You can learn a
lot about rootkits by visiting http://www.chkrootkit.org/, as well as by finding a script
for detecting installed rootkits. Scanning and attack tools are also popular, turning the
recently rooted system into yet another tool for global domination. Distributed denial

Vol. 27, No. 4 ;login:

http://project.honeynet.org
http://www.chkrootkit.org/

of service (DDoS) agents or handlers may be installed. The system may also be used to
run a bot, such as eggdrop (http://eggdrop.org), and to keep sysop privileges on some
IRC channels.

What does all of this activity have in common? It all requires downloading software to
the rooted system. Attackers most commonly use FTP, although they have been known
to use TFTP (especially on Windows boxes), and could use other mechanisms, like
Lynx (which version 1 of the lion worm did) or wget, as well. No matter what the
attacker uses, downloading software requires an outgoing network connection.

If you have a public Web server sitting behind a firewall, you can easily prevent outgo-
ing connections from that Web server. Web servers accept requests, they don’t make
outgoing connections to the Internet. A Web server could be performing DNS
lookups, but this is generally not done, since it is slow and can be done offline when
logs are analyzed (if anyone even cares about the FQDN of all visitors).

I suggest that you use firewall rules to block outgoing connections from public Web
servers. Even better, set the firewall up so that you get paged when the Web server
attempts to make an outgoing connection. At the very least, send yourself an email
from the firewall. An outgoing connection should NEVER happen, so if it does, some-
thing very bad has happened.

This firewall rule also blocks scanning of Internet addresses from a public Web server,
another common behavior seen from successfully attacked systems. Firewall rules like
this would have done a lot to slow down the various versions of Code Red, but not
Nimda, which used other attack vectors (JavaScript that executed the virus code,
README.EML or README.EXE).

Using this simple trick with other public servers will not be quite as effective. SMTP
servers make lots of connections to other SMTP servers, and if an SMTP server gets hit
with an SMTP worm (how could anyone forget the Morris Worm?), these connections
will also go to other SMTP servers, on port 25/TCP. Same thing with DNS servers, who
naturally make connections to ports 53 TCP and UDP. Still, only allowing connections
on these ports and sending out a page or email when something like FTP gets used
from your public SMTP relay or DNS server would catch some attackers.

If you really want to go further, do this for your entire internal network. You cannot,
practically speaking, only permit connections to specific remote hosts or services. You
can, however, block access to services forbidden by policy, and use this to set off
alarms. The popular Windows Trojan horse SubSeven (and others as well) will use a
connection to an IRC channel, or ICQ, to announce that it has been successfully
installed. If your policy forbids the use of IRC and/or ICQ, then block them, and alarm
on them.

In May and June of 2002, two sites were quietly compromised, and the configuration
scripts for software had a handful of lines added to them. In each case, the configura-
tion script now compiles a program, executes it, and removes the source and exe-
cutable while someone is running ./configure. The short program makes an outgoing
connection to a site, and if the connection succeeds, execs a shell at the victim’s end.
Think of this as a reverse telnet, but using (in this case) port 6667/tcp. The shell runs
as the user running configure. A firewall rule that blocks IRC (which just happens to
be the port used) would have blocked this backdoor. Too bad that one of the packages
backdoored was the Bitchx IRC tool (meaning that the choice of the IRC port almost
guarantees the port would be open).

August 2002 ;login: MUSINGS

| suggest that you use
firewall rules to block
outgoing connections from

public Web servers.

SECURITY

29

http://eggdrop.org

30

Ever read the End User
License Agreement that
comes with any software or
operating system you have
ever acquired? Its only
warranty is for the media it

comes on.

Other great examples are the Microsoft everything sharing ports, 137/udp and 139/tcp.
Certain attacks against IE encourage the victim to connect to a remote file share,
which gets treated as part of the Local Zone for IE security purposes. Always block
outgoing connections to port 139/tcp.

Marcus Ranum has talked about these types of tricks a lot in the past, and probably
will in the near future (he is teaching a class about Honeypots at the USENIX Security
Symposium). Ranum, in a past life, installed burglar alarms, and has talked about
tricks like putting an alarm on a bogus jewelry box (one that the owner knows never to
open). Having your firewall set off an alarm when something occurs that should never
occur works as well, and perhaps better, since the alarm is on a separate system, not
the one that has just been rooted.

DoR

A conservative think tank, the Alexis de Tocqueville Institution (ADTI), published a
White Paper this summer entitled “Opening the Open Source Debate.” The paper does
not really debate anything but instead contends that open source “opens the gate to
hackers and terrorists.” | certainly consider this a bogus and misleading statement, and
Microsoft has admitted that they give money to ADTI but will not say if they funded
this report.

Jim Allchin, group vice president of Microsoft, in testimony in the MS antitrust case,
had a lot to say about his own company’s software (http://www.eweek.com/arti-
cle/0,3658,5%6253D701%2526a%253D26875,00.asp). Allchin said that “sharing infor-
mation with competitors could damage national security and even threaten the U.S.
war effort in Afghanistan.” Wow. If Microsoft were to share their “secret,” proprietary
extensions to Kerberos Five, national security will be weakened? | don’t think so.

The truth comes out a bit later in the same article. There Allchin acknowledged that
some Microsoft code was so flawed it could not be safely disclosed. Included in this
was the part of the Message Queuing protocol that contains a coding mistake which
would threaten the security of enterprise systems using it if it were disclosed.

Well, that is certainly interesting news. Microsoft wants people to trust them and use
their OS software for enterprise-level systems, yet knows it has fatal errors within it. If
this were open source it would simply be patched, but because it is Microsoft it will
remain hidden, at least until someone discovers and discloses it — perhaps with the
Queuing worm? And which type of software are you going to trust now?

Andy Oram, of O'Reilly, has coined a term for this behavior. He called it “Denial of
Responsibility (DoR)” in http://www.oreillynet.com/cs/user/view/wlg/1500. Oram’s DoR
attacks are about vendors shipping code that they know has killer bugs in it (see
above). DoR is also about organizations and agencies that require the use of buggy
software, so that information that should be protected gets exposed instead.

I'd like to take the concept further and consider DoR in terms of licensing. On the one
hand, we have the GNU copyleft, open source, and the BSD license which describe the
rights and privileges of the users of open source (or some related variant) software.
Pundits argue that when open source software is used, no one is responsible for errors,
omissions, or bugs in the code.

And what about proprietary software? Ever read the End User License Agreement that
comes with any software or operating system you have ever acquired? Its only warranty

Vol. 27, No. 4 ;login:

http://www.eweek.com/arti-cle/0,3658,s%253D701%2526a%253D26875,00.asp
http://www.oreillynet.com/cs/user/view/wlg/1500.Oram�s

is for the media it comes on. You use the software, it is your responsibility. Now, there
is a real DoR attack. And, it is standard operating procedure today.

I like to compare the state of the current software industry to the automaobile industry
in the past. Do you know when automobile manufacturers started using safety glass in
windshields? | really didn’t appreciate this factoid until | watched a series on safety and
liability issues on PBS. I also was made aware of the issue when my daughter told me
that her husband was adding safety features, including modern brakes and safety glass,
to the Model-A Ford he was turning into a hot rod.

You might even see Model-A Fords these days; they are really popular as restorations
and hot-rod conversions. Their flat windshields are very distinctive and were once also
lethal weapons. The ordinary plate glass used in the windshields could explode into
razor sharp shards anytime a rock hit the windshield. It wasn’t until the mid-'50s that
safety glass became common in windshields. That’s right. The cars your parents might
have been driving (mine were) had plate glass windshields.

That was 50 years ago. Today, when Ford designs an SUV that rolls over quite easily, it
has a big battle with a tire manufacturer, trying to place the blame for a dangerous
design somewhere else. Newer Ford Explorers, however, have a wider wheelbase, mak-
ing them less prone to rollovers (something pointed out to Ford many years ago). But
do software vendors even bother? Nope. You use the software, therefore you are to
blame.

With this level of responsibility, it is a wonder that anyone pays for software. Vendors
take as much responsibility for their software, and the potential damage it might do, as
does the open source community. If you are forced to use non-open source software,
from a vendor who publicly declares that revealing information about the protocols
and APIs involved is definitely dangerous, | think you are making a big mistake.

It's like driving a car with a plate glass windshield, just hoping that that truck in front
of you doesn’t toss a rock at you.

August 2002 ;login: MUSINGS

It is a wonder that anyone

pays for software.

SECURITY

31

