
; LO G I N : D ecem b e r 20 0 9	iVo y eu r : 7 h a b it s of h ig h ly e ffec ti v e N agio s i m plem e ntation s	 57

D a v e J o s e p h s e n

iVoyeur: 7 habits of
highly effective Nagios
implementations
Dave Josephsen is the author of Building a
Monitoring Infrastructure with Nagios (Pren-
tice Hall PTR, 2007) and is senior systems
engineer at DBG, Inc., where he maintains
a gaggle of geographically dispersed server
farms. He won LISA ’04’s Best Paper award
for his co-authored work on spam mitiga-
tion, and he donates his spare time to the
SourceMage GNU Linux Project.

dave-usenix@skeptech.org

O n c e , s o m e y e a r s a g o , w h e n w e
were all younger, I had something of a
desire for knowledge (I’m guessing you can
probably relate). Don’t get me wrong: today
I spend a great deal of my time learning,
more time even than when I felt that urgent
want of it, but that’s not how I’d describe it
anymore. Now it’s more of a habit, a taste
for learning that is tempered by the things
I wish I hadn’t learned, tempered that is, by
the knowledge that haunts me. I’ll give you
an example.

I don’t remember who, and I don’t remember
where or when, but somewhere, somewhen, some-
one taught me the novel writer’s “first line” rule.
That the single most important part of a novel
was its first line. That it was obvious from line
one whether a piece of fiction was in fact a piece
of crap. Now, I don’t write fiction (or haven’t yet
anyway), and really I don’t even consider myself
a “writer,” but this “first line” business, well, it
haunts me. It’s something I simultaneously wish I
hadn’t learned and can’t let myself ignore. If you
weren’t aware of it, I’m sorry to have passed it on
to you. Even when writing 2000-word articles for
a tech journal, I invariably obsess over that con-
founded first line, revising this word or that, delet-
ing entirely and starting over from scratch until my
opening paragraphs have nothing whatsoever to do
with my eventual subject matter. I’ll give you an
example.

The opening line the computer geek part of me
wanted to begin this article with was, “There is a
fine line between monitoring systems that are ef-
fective and those that are annoying and useless.”
“A fine line!?” the lit-geek in me exclaims. “Why
don’t you just define a CLICHÉ variable and put a
‘while(1)’ around it? Or better yet, send two sleep-
ing pills to the entire subscribed readership of
;login: since that’s the effect you’re obviously going
for?!” (My inner lit-geek is kind of an elitist jerk.) At
this point in my process, I usually delete the line
in favor of something absurd and unrelated, but in
this case I couldn’t bring myself to delete it.

A fine line is in fact what it is; so fine that any one
of the seven tips I’m about to share can completely
change the effectiveness of an otherwise maligned
Nagios implementation. Further, all of them are
common pitfalls that I myself have fallen victim
to at one point or another, so they are things that
are likely to help other sysadmins. First line be

58	 ; LO G I N : VO L . 3 4 , N O. 6

damned: this time I will have the courage to use a cliché if it is apt. This
time I will NOT give myself over to the right half of my brain. This time, I
REFUSE to write an unrelated yet entertaining introduction that requires a
complex and clever segue into otherwise dry subject matter.

Oops.

1. Eliminate DNS Dependencies

The first tip I’d like to share has to do with name resolution. You can specify
hosts in Nagios by IP or DNS name. It’s probably a toss-up which of these is
more reliable. Using names makes Nagios dependent on an operational DNS
infrastructure. Using IPs eliminates the dependency but is a management
nightmare; IPs will change, and Nagios won’t be updated. In practical terms,
using names gives you rarely occurring, large outages, while using IPs gives
you more commonly occurring, individual outages.

You might think that Nagios being functional during a DNS outage would be
the least of your worries, but you’d be wrong, in my humble opinion. If Nag-
ios can remain functional during a DNS outage, it can provide good data on
what boxes in the infrastructure actually ceased to function properly during
the outage. There’s a huge difference between a monitoring system that can
provide good data during and especially after a cascading DNS failure and
one that cannot. That’s the kind of data that really lends credibility to the
system, and much of the difference between effective implementations and
maligned ones can be measured in credibility.

I recommend specifying names in the configuration files and then imple-
menting a DNS cache and name resolver on the Nagios box itself. Set up
zone transfers or otherwise automate the replication of DNS information
from your real nameservers to the Nagios box. This solves all of our name-
resolution woes; Nagios will point at itself for name resolution and won’t rely
on external DNS, while at the same time, there is no management overhead
on keeping IPs up to date beyond the initial configuration.

We use djbdns [1] for this purpose, which I like very much. It’s a small,
lightweight, secure system that is easily implemented and updated.

2. Minimize Notifications

There are a couple of very large problems with monitoring systems that send
too many notifications. The first is that the credibility of the monitoring
system suffers when folks get notified about things they don’t care about. It
makes the system “seem” stupid, and that perception is going to make it dif-
ficult for you to get resources to improve the system.

The second, closely related problem is that people will begin to ignore the
notifications. When actually important notifications are sent, they’ll be ig-
nored, and when/if management follows up, the monitoring system will be
blamed for not sending notifications at all. The lack of credibility will make
it easier for accusations like this to stick (despite evidence to the contrary).
Further, if people don’t trust the system, they’ll be more likely to roll their
own monitoring tools and less likely to ask you for help. This in turn will
tend to magnify and compound the original perception until vendors are
brought in and something truly stupid is implemented.

I’m not saying that you shouldn’t monitor lots of services. I’m only saying
that you should refrain from notifying anyone other than yourself about any-
thing unless:

; LO G I N : D ecem b e r 20 0 9	iVo y eu r : 7 h a b it s of h ig h ly e ffec ti v e N agio s i m plem e ntation s	 59

they’ve specifically asked you to do it■■

there’s an SLA around it■■

there’s a policy requiring it■■

Even if one or more of these requirements has been satisfied, I’d offer them
some alternatives instead (wouldn’t a daily/hourly report of boxes with high
CPU utilization be better?). Further, all notifications should be based on
thresholds that you’ve performed some analysis to obtain. Holt-Winters fore-
casting [2] is superb for this sort of thing, but anything is better than noth-
ing. The worst thing you can do is make up some arbitrary thresholds (or,
worse, take theirs), create a notification group that includes everybody, and
turn on Nagios (even if they ask you to).

There’s a creeping entropy about this problem that makes it seem more in-
nocuous than it is; notifications won’t be ignored on the first or second day.
Things will just slowly get progressively worse degree by tiny degree until
everyone’s pager is full of meaningless crap, no one notices real outages oc-
curring, and the vendors arrive. You really need to stay on top of useless
notifications. Hunt them down and eliminate them on a regular basis, ask
people if they care about the notifications they’re getting, see if you can get a
policy setup that requires problem acknowledgments for every notification,
etc.

I should also make the point that, in this context at least, you aren’t special.
It’s tempting to believe that the correct number of notifications for your or-
ganization is a subjective thing and that you don’t need to worry too much
because your recipients are savvy. Let me be clear—I don’t care if you’re sur-
rounded by the floating disembodied brains of particle physicists where you
work inside the singularity beneath the LHC, or by coffee machines harbor-
ing nascent AIs over at JPL, they will hate you if you send them too many
notifications, and “too many” is an integer that can be derived by a formula
that returns the absolute number of notifications you should be sending
given the number of hosts and recipients in your environment. My point is,
this is a universal truth of human nature, and you NEED to worry about it;
savvy is NOT an input variable. I’d give you the formula, but I haven’t had
a chance to work it out yet (when I do, I’m writing a LISA paper about it,
though).

3. Eliminate Email Dependencies

Once you’ve minimized the number of notifications you send, you should
proceed to make darn sure the ones you’re sending are getting delivered. A
few months back I wrote an entire article [3] on the subject of this tip, so I’ll
spare you the rant and summarize by saying that my faith in email is wan-
ing. Instead, I recommend text via SMS, voice notification via Asterisk, or a
combination of the two. Email-SMS gateways are OK, a real SMS modem at-
tached to the system is better, real SMS with voice backup is best. My article
walks you through the configuration of all of that.

Even if you do stick with email, an out-of-band backup is a great way to
make the monitoring system resilient against network outages, which is
helpful for the same credibility-related reasons listed in tip #2.

4. Monitor the Monitoring System

This one is self-explanatory. Few of us are good at introspection, and Nag-
ios being no exception, it’s wise to have at least a couple of heartbeat scripts
somewhere off the monitoring system to make sure the box and daemon

60	 ; LO G I N : VO L . 3 4, N O. 6

are running. In the past, we had separate boxes for monitoring and logging,
with the logging box watching Nagios. These days I have multiple special-
purpose Nagios systems watching each other.

5. Have a Naming Convention

I cannot stress enough how important it is to have a predictable nam-
ing convention for the hosts and services in your Nagios implementation.
The CPU_LOAD service should be called the CPU_LOAD service every-
where it is consumed, measured, reported on, and referred to throughout
your environment. It should transcend disparate monitoring systems, ex-
ecutive reports, event-correlated databases, and Web front-ends. The host
called fooServer02.hq.com should be referred to everywhere as exactly foo
Server02.hq.com, not fooServer2, or fooserver02.hq, or any other deriva-
tion thereof. “www.foo.com” should never be referred to as “fooweb” or “the
foosite” or anything other than “www.foo.com.”

Effective monitoring systems grow. They quickly become relied upon to
prove SLA compliance and provide re-purposed availability information to
executives, customers, and other technical staff members. When this hap-
pens, programs will be written to query and move data around. As things
get bigger, ancillary systems will come in—RRDtool, Cacti, etc. If you aren’t
anal-retentive about names from the get-go, then things will quickly devolve
into a kludgey mess. The RRDtool database referring to fooServer02.hq.com
will not match the name in Nagios, or people will write scripts assuming
different names. Data tables and reports will be empty for some systems but
not others, and it will appear to be the monitoring systems’ fault for not col-
lecting data.

Worse, it’s nearly impossible to fix these sorts of problems without a proper
and agreed-upon naming convention in place. Every new system, service, or
change introduces the possibility of another statically coded name exception
in one or more of the four thousand tiny data-mover scripts. Credibility is
quickly lost in an environment like this.

Your naming convention should be so pervasive that literal service names
start leaking into human vernacular. When people start saying things like
“CPU underscore Load” in meetings, you’re on the right track.

6. Aggressively Collect Performance Data

You may have wondered in tip #2 why you would want to monitor lots of
services if you weren’t going to notify on them. Performance data is the an-
swer. There is no good reason why you shouldn’t collect performance data
on every service that you poll. In Nagios even plugins that don’t officially re-
turn performance data via the pipe syntax can be parsed directly for perfor-
mance data. Tools are available to completely automate the detection of new
services on new hosts and to create and maintain round robin databases of
performance data for them. Even if you don’t have the means or the inclina-
tion to display performance data, you should be collecting it in case you ever
want to.

For years I have used the combination of NagiosGraph [4] and Drraw [5] to
glue Nagios to RRDtool. NagiosGraph does an awesome job of completely
automating the task of getting data out of Nagios and into round robin data-
bases. It detects new services and hosts using regular expressions, and cre-
ates new RRDs as necessary. After the initial setup, you don’t need to do a
thing, and you’ll have performance data for every service on every host you

; LO G I N : D ecem b e r 20 0 9	iVo y eu r : 7 h a b it s of h ig h ly e ffec ti v e N agio s i m plem e ntation s	 61

monitor. Drraw is a super-simple CGI-based Web app that takes a directory
of RRDs and gives you interfaces to draw anything from individual graphs
to dashboards. It is the most flexible interface for drawing graphs from
RRDs I’ve used. It makes it easy for me to quickly draw a graph that cross-
references data from all sorts of hosts in different locations, and I don’t feel
I need to keep the graph around. Usually I just draw it to get a question an-
swered and never save it at all. This sort of quick, informal graphical trou-
bleshooting has become an important tool for me, and I’d be an unhappy
sysadmin without it. I highly recommend both of these tools.

7. Implement Purpose-ful Nagios Systems

Finally, if you have the resources, it’s a great idea to consider running dis-
parate Nagios daemons for different purposes. For example, we run two dif-
ferent kinds of Nagios daemons where I work, “internal” and “external.” The
internal Nagios hosts sit in the production environment with the production
systems and query the NRPE-type services: CPU, memory, swap, disk space,
ps lists, and the like. The external Nagios daemons sit on the public Inter-
net and act like customers, logging into the public Web sites, authenticating,
clicking around, doing things that humans do.

We don’t bother rolling up alerts, preferring instead to let Nagios hosts indi-
vidually contact us about things they think are wrong. In this way we get a
much better feel for not only how reliable our services are but how reliable
our Nagios hosts are, and we gain a measure of clarity about a given prob-
lem based on which hosts are complaining and about what things. A box on
an XO link in California complaining about a problem that hosts in Texas
and Pennsylvania don’t see could imply an upstream network outage, for ex-
ample. This also has a tendency to keep the server configuration simple and
transparent.

That about wraps it up. I hope these weren’t overly obvious and that you
perhaps found something that might help you out in the future. There are a
lot of places to easily go wrong implementing monitoring systems, so often-
times it’s the human equation that makes a huge difference between good
systems and bad ones. A huge difference, I dare say, between two sides of a
very fine line.

Take it easy.

references

[1] djbdns: http://cr.yp.to/djbdns.html.

[2] Holt-Winters and exponential smoothing: http://www.itl.nist.gov/div898/
handbook/pmc/section4/pmc437.htm.

[3] Dave Josephsen, “iVoyeur: Message in a Bottle—Replacing Email
Warnings with SMS”: http://www.usenix.org/publications/login/2009-02/
pdfs/josephsen.pdf.

[4] NagiosGraph: http://sourceforge.net/projects/nagiosgraph/develop.

[5] Drraw: http://web.taranis.org/drraw/.

