®
® O Il. THE MAGAZINE OF USENIX & SAGE
’ ‘ June 2002 volume 27 « number 3

Inside:

ProTOWRAP
by Gunnar Wolf y

USENIX & SAGE

The Advanced Computing Systems Association &
The System Administrators Guild

36

by Gunnar Wolf

Gunnar Wolf is the
systems administra-
tor for a campus of
UNAM, Mexico's
largest University. He
has been a strong
promotor of both
Computer Security
awareness and the
Free Software move-
ment in his commu-
nity, and likes doing
small, useful tools in
Perl.

gwolf@campus.iztacala.unam.mx

protowrap

A Generic and Protocol-Specific
Wrapper

As system administrators, all of us should be very concerned, even para-
noid, about security. There are simply too many threats out there waiting
for us to become distracted in order to exploit a vulnerability in our sys-
tems. New vulnerabilities are found day to day, and exploits are very
quickly crafted for each of them. We want to trust the programs we run at
our server, but we know that a secure server is utopian. There are many
ways to harden our servers against unknown attacks, but these often
require heavy tinkering with the system. In this article, | will propose
another alternative, much less invasive and more flexible than what | have
found up to now: generic and protocol-specific wrappers, implemented
through a couple of Perl modules called ProtoWrap.

A word of warning to the faint of heart: although ProtoWrap does work, it is a work-
in-progress, and some important aspects (such as the interface to the operator) have
been relegated to focus development on correct and full operation, not on ease of use.

I am the first to recognize that I am by no means an excellent programmer, and | know
that a better implementation can be made. If you think you can help make ProtoWrap
work better, please do. In fact, if you want to develop a similar project sharing the ideas
provided here, | would be delighted to hear about it.

General Philosophy

As you know by now (unless you like skipping introductions), ProtoWrap is a series of
wrappers. Assuming we are in a hostile environment, we cannot trust a network client
to be a good citizen. All incoming connections are, thus, potentially hostile and must
pass through a defensive layer before reaching our real server.

I decided to focus my work on a very specific kind of protocol: line-oriented TCP pro-
tocols. By “line-oriented” | mean that all commands sent from the client to the server
are one or more lines of text, delimited by a new-line character. Such protocols include
HTTP, FTP, SMTP, IMAP, POP3, finger, ident, and many others. They do not, however,
include Telnet (character-oriented; lines may be assembled by the server, but they sim-
ply are not relevant at the protocol level), DNS and NFS (UDP-based), SSH (traffic is
encrypted, we can not guess where new lines are), and many others.

Wrapping a program should happen as transparently as possible. Many network serv-
ices do not involve — on regular operation — a human at either end, and we should alter
regular operation as little as possible in order not to trigger a denial of service.

ProtoWrap was designed to be useful even without knowing which protocol it would
be wrapping (hence | describe it as a generic wrapper). We will see later how it can be
invoked to protect almost every line-oriented protocol. It was very important for me,
however, to make it easy to teach it how to intelligently wrap a specific protocol.

Another very important point is that ProtoWrap should be easy to deploy. It should
not depend on a particular system configuration, and it should be able to scale. This
will also be further explained later on.

Vol. 27, No. 3 ;login:

Finally, ProtoWrap was designed to be able to protect heterogeneous networks. If Pro-
toWrap is unable to run on a particular system setup, it should be able to protect it
from the outside, running on a different computer or even a different network.

In the Beginning

ProtoWrap began as my answer to stopping spam with different mail transport agents,
on different architectures, with a minimum of work. | soon realized the solution | pro-
posed could very easily be generalized, and become much more useful, to many differ-
ent protocols.

| presented ProtoWrap as my final paper for graduation in computer science at
Kennedy Western University. If you want to get full details on how and why ProtoWrap
exists and works, | invite you to visit http://www.gwolf.cx/seguridad/wrap/.

I chose to develop ProtoWrap using Perl because of Perl’s rich pattern-matching capa-
bilities and because of the availability of just about any needed function in the CPAN
(Comprehensive Perl Archive Network, http://www.cpan.org). Perl also provided me
with a clean and easy-to-understand way of dealing with network sockets, an absolute
requirement for the wrappers to exist.

A number of problems arose while developing ProtoWrap, as happens in any software
project. Among the most challenging was the dual-input problem: data can come, at
any moment, from either the client or the server. How can you make a Perl program
listen to two different data sources at the same time, and react to the one that provides
the whole line first? I owe the answer to Salvador Ortiz, with whom | spent several
hours hacking and testing possible alternatives, until we decided to go to a lower level,
using Perl’s 10::Handle and 10::Select modules. Once again, for more details on the
possibilities we studied and why this one was chosen, please visit http://www.gwolf.cx/
seguridad/wrap/node62.html.

ProtoWrap is able to listen for clients and talk to its server in different ways. Some
users might require that a daemon always be running, directly listening to its port, to
save resources on multiple invocations and reduce startup time. Others will prefer
running the wrapper from inetd, handing it the connection in the form of a
STDIN/STDOUT file descriptor pair. As for the server, in some cases it will be started
from ProtoWrap, also via a mechanism similar to inetd’s, and in others it will always
be running — maybe even on a different machine — and the connection will be done by
TCP/IP sockets.

The Generic Wrapper Be_havu_)r _ use ProtoWrap:
Using ProtoWrap in the most basic way is very straightforward. Of use strict:
course, the protection it offers will not be as complete as if we were

#!/usr/bin/perl -w

using a protocol-specific module. The protection that ProtoWrap
will give to an unknown protocol is, nevertheless, very important:
buffer overflows can be easily prevented altogether. Calling Pro-
toWrap as shown in Listing 1 results in having the IMAP server in
the same system (as 127.0.0.1 is the localhost address) protected by
ProtoWrap. The real server is running on port 10143, and should be
protected by packet filtering or TCPWrapper rules so that it only
accepts connections from the same machine. The result of this setup
is shown in Figure 1.

This wrapper will limit every line coming from the client to 25 char-
acters, more than enough to send IMAP commands, and will effec-

June 2002 ;login: PROTOWRAP

my $wrapper = ProtoWrap->new('standalone' => 1,

'listenPort' => 143,

‘destType' => 'ip’,

'‘destAddr' => '127.0.0.1",

‘destPort' => 10143,

‘maxLinelLength' => 25,

‘logLevel' => 0

);
Swrapper->startServer() or die 'Can\'t start wrapper!’;
sleep;

Listing 1

SECURITY

37

http://www.gwolf.cx/seguridad/wrap/
http://www.cpan.org
http://www.gwolf.cx/

Figure 1

tively avoid any buffer overflow attack. Further, ProtoWrap will alert the sys-
tem administrator via a syslog entry that an illegal line was sent to the server,
reporting what the line’s contents were.

Protocol-Specific Extensions

Of course, ProtoWrap can be easily extended well beyond this simple behav-
ior. All protocols implement a specific set of instructions, and deviations
from it can be easily marked as misuse and discarded with no remorse. In
most protocols, it is also easy to define stages of operation — different subsets
of commands will be valid or invalid at different times during the session. By
making each line’s validation by using the wrapper’s testLine method, it is
very easy to call a protocol-specific validation function. In order

#!/usr/bin/perl -w
use ProtoWrap::POP3;
use strict;

'destType' => '"ip’,
‘destAddr' => '127.0.0.1",
'destPort' => 10143,
'logLevel' => 0,
'maxLoginAttempts' => 3
).

sleep;

my $wrapper = ProtoWrap::POP3->new('standalone’ => 0,

$wrapper->startServer() or die 'Can\'t start wrapper!’;

to demonstrate this, | wrote two protocol-specific wrappers: for
POP3 and SMTP services.

A wrapper for POP3 can be called with Listing 2; maxLine-
Length was now omitted, as we will validate each line separately.
Here, instead of running in stand-alone mode, the wrapper will
now be invoked from inetd or a similar daemon, which will
determine which port it will listen on. Conceptually, this setup
still resembles Figure 1. We also have a new entry; maxLoginAt-
tempts. If someone tries to log on with an incorrect password
more than the specified number of attempts, the connection
will be dropped.

Listing 2

:':.:-1:_. .._'-=-'|;';r

Il
2rver

Wirapper

Figure 2

The wrapper for SMTP is much more elaborate and able to do

more. A typical startup configuration for SMTP can be seen in
Listing 3. Here, instead of running SMTP at a different port and connecting
to it via regular sockets, we do not run the SMTP server until a connection is
received. The server will then be spawned, and when the connection is closed,
only the wrapper will continue running (see Figure 2). Though it looks very
similar to Figure 1, not having the server listening on a different port can
make a huge difference, both from security and performance standpoints.

We see many new parameters here. Most of them were introduced to help
stop spam. They are;

= blockAddrList — Addresses we do not wish to receive mail from (anchored
to end of string). They can be specific mailboxes (as hahaha@sexyfun.net,
a well know worm) or whole domains (everything coming from spam-
mer.org).

= blockBodyList — Every line of the incoming message will be tested against
the lines provided here, and if a line matches, the message will be dis-
carded. In this example, most attachment viruses will be avoided, as the
most common executable attachment types for Windows systems are dis-
allowed.

= maxMsgSize — The maximum message size (in bytes). In the example,
messages over a megabyte will not be allowed.

= maxRcpt — The maximum number of recipients for a message in a single SMTP

session. Spammers usually send hundreds of messages at a time using open relays.
If a spammer is able to use our machine as a relay, this will drastically cut its effec-
tiveness as a spam relay. In the example, this number is set to zero, allowing for
any number of recipients. This machine may be a mailing list server.

Vol. 27, No. 3 ;login:

#!/usr/bin/perl -w
use ProtoWrap::SMTP;
use strict;
my $wrapper = ProtoWrap::SMTP->new('standalone' => 0,
'destType' => 'pipe’,
'‘pipeCmd"' => '/usr/sbin/sendmail -bs’,
'logLevel' => 3,
'maxMsgSize' => 1048576,
'blockAddrList' => [‘hahaha@sexyfun.net','@spammer.org'],

'blockBodyList' => ['AContent-Type: application.+\.(PIF|EXE|VBS|COM|BAT|LNK|SCRN\"],

‘relaylpList' =>['192.168.150.",'192.168.160."],
‘relayDomainList' => ['mydomain.org’, 'gwolf.cx'],
‘'maxRcpt' => 0

)

$wrapper->startServer() or die 'Can\'t start wrapper!";
sleep;

Listing 3

= relayDomainList — Domains for which we allow relay, when they appear either as
senders or as recipients of a message (anchored to end of string).

= relaylpList — IP ranges or specific addresses for which we allow relay (anchored to
the beginning of the string).

Some of these functions are already handled by most SMTP servers —why am | reim-
plementing them with ProtoWrap? First, most SMTP servers allow only for specific
text matching. With ProtoWrap, we have access to the whole Perl regular expression
engine, which gives us much more flexibility and ease of use. Second, if we have our
wrappers at a central site such as a firewall, with a setup similar to Figure 3, configura-

tion will be much easier to mantain than if we have them spread on each of
our Servers.

Wrapping Up

ProtoWrap has changed a lot as | have found and incorporated new ideas
into it. | am sure it can be a very useful security tool to system administrators
with almost every kind of setup. | am also sure that the ideas | have shown
here are just the beginning of what can be achieved by such a wrapper.

I have been using ProtoWrap for almost a year on my production servers,
since | first labeled it as usable. There are still many features pending, and |
sincerely hope to have some of them done by the time this article reaches
you. The actions | wish to take before labeling ProtoWrap as stable, and will
be done before this goes to print, are:

= Correct Perl module packing — ProtoWrap should be installed as Perl
modules. Right now, installation must be done by hand. Soon, I hope to
have ProtoWrap ready to be set up as most Perl modules are.

= .rpm, .deb, .tgz packages — Most operating systems are provided with
package management systems. Linux distributions handle usually either
.rpm or .deb format packages; most other UNIX systems use the simpler .tgz for-
mat. These packages allow installation, deinstallation, version management and
dependencies. ProtoWrap should then also be available in packaged format.

For more details on other various interesting points that ProtoWrap can be extended
to cover, please visit http://www.gwolf.cx/seguridad/wrap/node72.html.

To sum up, ProtoWrap is just a proposal, a proof of concept, and I am more than sure
it is not the ultimate security solution. It is, however, a valuable addition to most sites’
overall security strategy.

June 2002 ;login: PROTOWRAP

Figure 3

SECURITY

39

http://www.gwolf.cx/seguridad/wrap/node72.html

