
58    AU G U S T 20 13  VO L . 3 8 N O. 4 	 www.usenix.org

COLUMNS

iVoyeur
inotify

D A V E J O S E P H S E N

The last time I changed jobs, the magnitude of the change didn’t really
sink in until the morning of my first day, when I took a different com-
bination of freeways to work. The difference was accentuated by the

fact that the new commute began the same as the old one, but on this morn-
ing, at a particular interchange, I would zig where before I zagged.

It was an unexpectedly emotional and profound metaphor for the change. My old place was
off to the side, and down below, while my future was straight ahead, and literally under
construction.

The fact that it was under construction was poetic but not surprising. Most of the roads I
travel in the Dallas/Fort Worth area are under construction and have been for as long as
anyone can remember. And I don’t mean a lane closed here or there. Our roads drift and wan-
der like leaves in the water—here today and tomorrow over there. The exits and entrances,
neither a part of this road or that, seem unable to anticipate the movements of their brethren,
and are constantly forced to react. They stretch and grasp, and struggle to keep pace, and
sometimes they even manage to connect things, albeit usually not the things they claim to
connect. The GPS units, having given up years ago, refuse to commit themselves, offering
only vague, directionless suggestions that begin “continue to merge.”

On that particular morning—and really every morning that one takes a rarely traveled road
in DFW—that new zig was literally and figuratively the beginning of an adventure into a
wholly unexplored country, despite my having traveled the route several times in the past.
Often, because of the unfortunate, disembodied exits, these adventures involve the acci-
dental continued merging onto another highway in an utterly unexpected direction (usually
north). So it was that I arrived emotionally depleted and 15 minutes late on the first morning
of my new job. They didn’t seem to notice.

I can imagine neither the ultimate goal of the master plan under which our Department of
Transportation labors nor whether its intent is whimsical or malevolent, but it certainly has
provided ample food for reflection over the years. Many of my professional undertakings
remind me of this or that aspect of our highways.

There are, for example, problems that seem to recur every so often that, like the exits in
Grapevine TX, take me in a new and surprising direction every time I visit. File system
notification seems to be one such problem. Every time I’ve had a need to come up with a fool-
proof way to monitor changes to a set of files or directories, my options seem to have changed
radically.

With three in-kernel solutions—dnotify, inotify, and fanotify—kernel instrumentation like
systemtap, several external libraries like libevent, and myriad security-focused tools like
snoopy logger and samhain, there are now more ways to monitor changes to files than there
are types of file in UNIX.

Dave Josephsen is the
author of Building a
Monitoring Infrastructure
with Nagios (Prentice Hall
PTR, 2007) and is Senior

Systems Engineer at DBG, Inc., where he
maintains a gaggle of geographically dispersed
server farms. He won LISA ‘04’s Best Paper
award for his co-authored work on spam
mitigation, and he donates his spare time to
the SourceMage GNU Linux Project.
dave-usenix@skeptech.org

www.usenix.org	   AU G U S T 20 13  VO L . 3 8 N O. 4  59

COLUMNS
iVoyeur

On this visit, after an afternoon of reading, I decided to try out
the inotify API, which is built-in to Linux kernels >= 2.6.13.
Created to address several shortcomings in dnotify, namely, a
vastly simplified (signals free) interface to more precise events
about more specific file-system objects (dnotify only works
on directories), inotify makes dnotify obsolete. The consensus
seems to be that unless you very specifically need an in-kernel
solution for monitoring directories that will never be unmounted
on Linux kernels < 2.6.13, dnotify should be ignored. I should
also mention that there are a few wrapper libraries that provide
a more portable and abstract interface to inotify and inotify-like
functionality on systems other than Linux. Among these are
inotify_tools, FAM, and Gamin.

Further, the inotify_tools package provides two programs that
are suitable for use in shell scripts: inotifywatch, which collects
and reports inotify events in a “tail -f” fashion, and inotifywait,
which blocks waiting for user-specified inotify events.

Inotify’s interface is pretty simple. After creating an inotify
instance with inotify_init(), the application informs the kernel
which files it’s interested in watching with one or more calls to
inotify_add_watch(). Each call to inotify_add_watch() is accom-
panied by a path name and a bitmask specifying the event types
to watch for. The add_watch function returns a file descriptor,
which can be poll()’d, select()’d, or simply read() by your applica-
tion. When successfully read, the file descriptor returns one
or more inotify_event structures, each of which contains the
details of a single file system event. When the application has
finished its monitoring duties, it closes the watch file descriptor.
I’ve provided a small example program in Listing 1.

Adding and Removing Watches
The add_watch function is not recursive, and therefore must be
called on each subdirectory in a given directory that you want
to monitor. If you call it on a directory, it will monitor all files in
that directory (but not files in subdirectories). The function is
formally defined as follows:

int inotify_add_watch(int fd, const char *pathname, uint32_t mask);

Add_watch returns 0 on success or -1 on failure. The first argu-
ment is the file descriptor returned from inotify_init(), and is
used as a means of referring to our inotify instance. The second
argument is the path to the file or directory you want to monitor.
The application needs to have read permission on this object for
the call to succeed. The third argument is a collection of event
bits OR’d together. There are 23 possible events, 12 of which
represent file system actions, like IN_CREATE (a file or directory
was created).

A few event constants are shorthand for combinations of other
events. For example, the event IN_MOVED_FROM is set when a file
is moved out of a monitored directory, while IN_MOVED_TO is set

when a file is moved in to a monitored directory. The shorthand
event IN_MOVE can be used in lieu of both MOVED events. The
shorthand event IN_ALL_EVENTS can be used to subscribe to all
event types.

When a successful read returns an inotify_event struct, the
same event constants are used in the struct to communicate the
type of event that has transpired. Several of the event types only
occur as output from inotify in these structs. Examples include
IN_ISDIR, which is set whenever an event describes a directory,
or IN_UNMOUNT, which is set when a directory is unmounted.

Finally, a few event types can be set in the bitmask to specify
options to the inotify subsystem, like IN_DONT_FOLLOW, which
turns off dereferencing of symbolic links. The complete list of
event types is available in the inotify(7) man page.

Calling inotify_add_watch() on a file or directory that is already
being watched replaces the event mask for that file or directory,
but specifying IN_MASK_ADD in the replacement mask modifies
this behavior such that the new mask is OR’d with the old one.

A call to inotify_rm_watch() explicitly removes watches on
named files or directories. Whenever you explicitly remove a
watch, or a file is moved outside a watched directory structure,
inotify generates an event with the IN_IGNORED bit set.

Reading Events
The FD returned by add_watch follows the universal I/O con-
vention, and may be treated like any other file descriptor. If no
events have occurred when your application attempts to read()
the descriptor, it blocks until an event is available. Applications
may use poll() or select() for nonblocking behavior. Success-
ful reads yield a stream of bytes, which is composed of one or
more serialized inotify_event structs. The struct is defined as
follows:

struct inotify_event {

int wd; //the FD on which the event occurred

uint32_t mask; //bitmask describing the event

uint32_t cookie; //cookie to detect related events

uint32_t len; //size of the name field in bytes

char name[]; //null terminated filename (optional)

};

The wd descriptor is used by applications that are monitoring
multiple files or directories via the same inotify file descriptor.
To use it, your application needs to keep an internal map that
relates the file descriptors returned by add_watch, to the files
you passed into add_watch.

The mask is a bitmask that describes the event using the con-
stants I’ve discussed above.

60    AU G U S T 20 13  VO L . 3 8 N O. 4 	 www.usenix.org

COLUMNS
iVoyeur

Listing 1

www.usenix.org	   AU G U S T 20 13  VO L . 3 8 N O. 4  61

COLUMNS
iVoyeur

Cookies are currently only used to associate MOVE events that
are the result of renaming files. When a file is renamed, two
events will be generated: an IN_MOVED_FROM event for the old file
name and an IN_MOVED_TO event for the new file name. When
this occurs, the value of the cookie field will be the same in both
events, so that the application can associate the two.

If an event occurs to a file inside a monitored directory, the name
field will be set to the name of the file, and len will indicate the
number of bytes allocated for the name field. If, however, the
event occurs to the directory itself, name will be NULL and len
will be set to 0.

Because name is a dynamically allocated field, predicting the
necessary size of the read buffer for the next event struct is
impossible until you’ve read the struct and dereferenced the len
field.; however, we can safely assume the size of the next struct
will be smaller than:

(sizeof(struct inotify_event) + NAME_MAX + 1)

where NAME_MAX is the local OS constant that specifies the
maximum size of a file name (usually set in limits.h). In Listing
1, I’m passing a buffer 10 times this size to read(). This will allow
the application to retrieve at least 10 events with a single read()
efficiently, and use pointer arithmetic to split them out. A read
from an inotify file descriptor will yield the number of available
events that will fit in the supplied buffer. In the event that you
pass a buffer that is too small to hold the next single event struct,
read() will fail with EINVAL.

Because add_watch is not recursive, for inotify applications to
dynamically detect and add_watch newly created subdirecto-
ries in a currently watched directory is pretty common. To keep
things simple, I didn’t include an example of that in my sample
code, but I hope given this article’s Listing 1, that it’s an obvious
enough exercise for the reader.

As always I hope you’ve enjoyed the ride. Until next time, con-
tinue merging.

