
F E B R U A R Y 2 0 1 3   v o l . 3 8 , n o . 1
E L E C T R ON I C S U P P L E M E N T

 | FEBRUARY 2013 | VOL. 38, NO. 1 | mad ’12 | WWW.usenix.org	 PAGE 1

2012 Workshop on Managing Systems
Automatically and Dynamically (MAD ’12)
Hollywood, CA
October 7, 2012

Keynote
Summarized by Saad Alaboodi (ssalaboo@uwaterloo.ca)

To Err Is Human, to Log Divine: Expediting Production
Failure Diagnosis with Better Logging
Ding Yuan, University of California, San Diego; University of Illinois at
Urbana-Champaign; University of Toronto

Ding Yuan began his keynote speech by posing a set of ques-
tions important to developing practical solutions to improve
the diagnosability and reliability of large systems. For exam-
ple, how much do log messages really help in debugging? Are
they good enough? What are the opportunities for improving
log qualities? Can we automatically improve log messages?
To further augment his questions, Yuan shared his experi-
ences in the area with some statistics about software failures
analyzed from error logs on common systems, and their
direct relationship with software design. This was accompa-
nied with a survey about several diagnosis tools developed to
accommodate efficient error log automation and analysis.

Yuan then highlighted the common problem of debugging
software failures in production environments. In his view,
the problem is due to privacy issues of applications data, dif-
ficulty of failures reproduction, and difficulty of recreating
an environment because it is either prohibited or expensive.
Log diagnosis is a common measure used to address such
challenges. Even though 99% of users plan to or actually do
aggregate log messages, the frustrating reality of impracti-
cal error logs continues to exist. To demonstrate a typical
scenario, Yuan showed a snapshot taken from an Apache
error log about a simple error—inability to read a particular
file. The example doesn’t simply lay down the exact problem;
it is considered an “afterthought” of the actual problem. Such
a scenario leads developers to ask for more information (e.g.,
DNS messages, system configuration, etc.). Thus, the quality
of such error logs remain low when it comes to their use.

To improve the quality of error logging and diagnosis for a
particular system, Yuan put forth three important steps: (1)
understand error log messages, (2) enhance existing error
logs, and (3) insert new quality error logs. Several tools are
built in this regard: LogEnhancer and SherLog for error log-
ging enhancement, and ErrLog for log insertion. The remain-
ing part of the talk, however, focused on the first two steps.

Yuan stressed that to understand error logging, and more
importantly to identify log messages that are not an after-

thought, the study of developers’ patches modifying software
is essential. Out of 9067 logs surveyed, Yuan and his team
found that modifications to log message could be broken
down into four categories: 26% of modifications on verbos-
ity, 27% on variables, 45% on text, and 2% on location. Each
of these categories was further classified into subcategories.
For example, verbosity can be panic/fatal messages, errors/
warnings, etc.; the team also found that the dependency
between verbosity and variables directly affects the avail-
ability and reliability of error logs. Usually, the modifications
to log text can be fixed easily. Furthermore, developers rarely
move the location of logging code. To enhance consistency of
verbosity in particular, a simple tool called “CP-Miner” was
developed. This tool basically detects similar code snippets.

Yuan then briefly described the LogEnhancer tool. The idea
of this tool is to augment existing error logs with useful infor-
mation whereby diagnosis can be enhanced. This tool basi-
cally collects causally related variable values, which can be a
complex task. Yuan showed a snapshot of variables in typical
program code, demonstrating the main idea of this tool. To
record variable values during runtime and avoid fragmenta-
tion, the check value conditions written by code developers
are used. Another technique is to reconstruct the values from
other expressions in the code. To avoid overhead, only a few
relevant parameters are logged, which amounted to less than
1% in software evaluated by Yuan and his team. Yuan also
emphasized that, because parameters are collected from
error messages rather than data, this technique doesn’t raise
privacy concerns. Yuan mentioned that overall evaluation
of such automated tools matched 90–95% of manual logging
performed in the past 5–10 years on the selected code.

In terms of future work, Yuan demonstrated the importance
of quality error logs in current systems and presented an
example using aviation and pilot systems. Complex systems
involve complex interactions in the code, where correlating
log events become more challenging. Therefore, the focus
will be on making logs natural and effective so system users
can understand actual system behavior.

Jon Stearley asked whether any values were captured from
RAM. Yuan said that values were taken from error messages
in the code. The reconstruction of values raised several ques-
tions. For example, when Yuan was asked about where to stop
when recreating values back from their previous variables,
he replied that no limit is usually set to the analysis; how-
ever, only related values are recorded, and redundancy is
removed. Also, the tool stops at clear code boundaries. Greg
Bronevetsky raised the point that some function pointers

Conference Reports

PAGE 2	  | FEBRUARY 2013 | VOL. 38, NO. 1 | mad ’12 | WWW.usenix.org

E L E C T R O N I C S U P P L E M E N T

cannot be recreated. Yuan commented that values closer to
the error message are more valuable to the error anyway.
Wei Xu asked about the case of multithreading, and how it
could be captured. Yuan acknowledged that it is hard to check
for such scenarios; thus, it was not included as it could be
misleading where the number of values would be exponential.
Finally, Saad Alaboodi asked about whether cyber attacks
targeting error logs, such as injected error logs, were detected
or considered. Yuan replied that although security attacks
were not considered, some tools might be used to check for
consistency of values based on the original code, which might
address some general security issues.

Recommendation Systems
Summarized by Devesh Tiwari (devesh.dtiwari@ncsu.edu)

Towards a Data Analysis Recommendation System
Sara Alspaugh, University of California, Berkeley; Archana Ganapathi,
Splunk, Inc.

Sara presented her experience with collecting and analyzing
large data sets at Splunk. The amount of data generated by
such companies is growing rapidly, but analyzing these data
sets in a meaningful way is very challenging for three main
reasons: (1) it often requires too much effort, in many cases
manual effort; (2) it requires the knowledge of the domain the
data is coming from; and (3) it is easy to overlook interesting
patterns. Sara talked about her experience in meeting some
of these challenges and how to move toward automated data
analysis and a recommendation tool.

Sara specifically focused on data collected at Splunk, where
data sets are queried and indexed using a MapReduce-like
architecture. Data sets also come from Splunk customers
such as Oracle, US Airways, etc. At Splunk, a pipeline of que-
ries is performed to analyze data, and intermediate results
are stored in a matrix-like structure suitable for performing
pipe queries. One interesting insight from analyzing these
data and queries is that customers are usually querying the
most recent data; up to 80% of queries look into the data gen-
erated within the past six hours.

This study also discovered that the length of searches are
mostly with 20 terms; however, Sara could not provide an
intuitive reason behind why ad hoc searches were longer
than scheduled searches. A surprising finding was that 30%
of the people were searching with just the “search” function,
and this is surprising because this is equal to doing grep with
such an expensive service. Finally, she introduced the ongo-
ing work ART, an Analysis Recommendation Tool, where
ART will be guided by user feedback to find patterns, and
find correlation across different data sets instead of querying
each data set in isolation.

Sara answered the questions about how to do this analysis
maintaining anonymity, without looking at the actual fields

but instead looking at the hashes. Another suggestion was to
apply decision trees for finding correlation among data sets.
Sara replied that this was in-progress using similar tech-
niques such as PCA and other machine learning algorithms.
Another important clarification was that the time to process
queries was much smaller than the timeline shown on the
result graphs, making the observations valid.

Mojave: A Recommendation System for Software
Upgrades
Rekha Bachwani, Rutgers University; Olivier Crameri, EPFL; Ricardo
Bianchini, Rutgers University; Willy Zwaenepoel, EPFL

Rekha Bachwani proposed a solution for preventing soft-
ware upgrade failure. As applying patches is becoming more
and more common, software upgrades (patches) may and
do themselves fail (there’s a 5–10% failure rate). Worse,
these upgrades themselves become the root cause of future
software bugs. One current technique is to delay the upgrade
until it has “matured,” which is inefficient in many cases.

Rekha presented a solution to this problem with Mojave, a
system in which users (who apply software upgrades) and
developers (who write patches) collaborate to reduce the fail-
ure of software upgrades in different environments. Mojave
provides accurate recommendations to the user whether to
apply a patch or not, what is the likelihood of failure, and so
on. The system makes an observation that two systems that
fail on patches may have the same environment settings
before applying the patches; hence, this can be “learned” to
avoid future failures. Therefore, the developer learns the
system settings and outcome of applying patches from will-
ing users/early adopters and uses a machine learning-based
regression model to predict the likelihood of failure if this
patch is applied by a new user. The tool was developed and
tested under an academic setting (approx. 80 machines) and
shows promising results (with 96–100% prediction accuracy,
preventing failures for most new users).

During Q&A, Rekha pointed out that their machine-learning
algorithms account for higher order dependencies for pre-
dicting failures. Another interesting question was why would
users collaborate? Rekha replied that having an incentive
system for users to provide full information about the sys-
tem on which an upgrade failed will help everyone because
developers cannot simulate all the possible configurations
(even using techniques such as symbolic execution). Rekha
also noted that in the future such systems can be automated
to recommend settings to users so that the upgrade will not
fail. She also mentioned that the threshold knob can be tuned
to achieve more pessimistic or optimistic recommendations.
Finally, she pointed out that this is similar to cooperative bug
isolation approach, with two main differences: no overhead
during production runs and short periods of data collection.

 | FEBRUARY 2013 | VOL. 38, NO. 1 | mad ’12 | WWW.usenix.org	 PAGE 3

E L E C T R O N I C S U P P L E M E N T

Managing the Cloud
Summarized by Saad Alaboodi (Ssalaboo@uwaterloo.ca)

Vayu: Learning to Control the Cloud
Ira Cohen, Ohad Assulin, Eli Mordechai, Yaniv Sayers, and Ruth
Bernstein, HP Software

Ira Cohen presented Vayu, a system intended for manag-
ing cloud applications from performance, availability,
and capacity standpoints. Cohen started the presentation
with a video that demonstrated the essential, challenging
issues of cost and performance when moving into the cloud.
Ultimately, this product aims at achieving an optimiza-
tion goal with respect to availability and performance,
cost, and resources. To achieve this, Cohen said, we need
to understand the application behavior under load, which
is the premise on which this product relies. Vayu learns
cloud-based application behavior and analyzes the tradeoff
between those optimization goals mentioned earlier in
accordance with customer needs.

As a simple case study, Cohen analyzed the application load
of a cloud-using online flower retail store during the month
of February. This month has three distinct periods of applica-
tion usage loads: regular days, weekends, and Valentine’s Day.
Vayu compared different cloud providers by virtually run-
ning their capabilities based on different demand scenarios
serving the flower store loads. A virtualized sandbox is used
for such runs. Upon completion, the business owner can then
perform cloud-sizing analysis based on summarized com-
parisons with respect to cost, performance, and resources.
These generated dashboards allow flexible manipulation
of the results, whereby the user can filter results per user,
transaction, day, and so forth. Additionally, the user can
change some of the parameters to see their effects on calcu-
lated results. Finally, Vayu can implement the desired action
rules chosen by the user.

In terms of the underlying technology, Cohen explained that
Vayu consists of four major components: demand feeding
into application monitors, performance problem detection
and characterization, action learning, and recommenda-
tion. These components iterate to build the Vayu knowledge
base. Cohen provided a top-level description of some of these
components and mentioned that the performance detection
and characterization component addresses both normal and
anomalous behavior of the application. For normal behavior,
the system detects seasons, which are important to make
it adaptive. This is implemented using a heuristic-based
algorithm. For anomalous behavior, the employed tech-
nique keeps tracks of all metrics exceeding their respective
baselines, groups them, then computes the corresponding
probability of significance. For the action-learning compo-
nent, the K-nearest neighbor algorithm is used to address the
classification problem.

Greg Bronevetsky asked about the assumptions used in iden-
tifying normal behavior. Cohen simply answered that no par-
ticular assumptions were made except relying on predefined
metrics of interest, for example, the speed of deviation from
an expected behavior. Marc Chiarini asked about the capabil-
ity of analyzing multiple, more complicated seasons. Cohen
acknowledged the capability of Vayu handling multiple
seasons without mentioning any specifics. Finally, as a sweet
ending, Cohen played a short birthday clip made for him, and
shared some chocolate with the audience for this occasion!

A Framework for Thermal and Performance
Management
Davide Basilio Bartolini, Politecnico di Milano; Filippo Sironi,
Massachusetts Institute of Technology; Martina Maggio, Lund University;
Riccardo Cattaneo and Donatella Sciuto, Politecnico di Milano; Marco
Domenico Santambrogio, Politecnico di Milano and Massachusetts
Institute of Technology

Davide Bartolini started the presentation with a brief
introduction of power and its importance to key operational
metrics in server farms today, particularly the power con-
sumed by processors, one of the most power-hungry compo-
nents in computing systems. These metrics include total cost
ownership (TCO); reliability and efficiency, e.g., mean time
to failure (MTTF); and power leakage. Bartolini then moved
to highlight the proposed framework, Dynamic Performance
and Temperature Manager (DPTM), for combined thermal
and performance management. The framework aims to
provide self-adaptive, cost-effective heat dissipation solu-
tions that fit chip multi-processors (CMPs). The framework
basically harnesses idle-cycle injection to control processor
absorbed power and thus temperature. Being adaptive, this
framework avoids the problems of impaired SLAs and QoS in
current methods.

Bartolini explained how their proposal extends the Dime-
trodon framework with respect to thermal and performance
control. Within the DPTM framework itself, a simple heuris-
tic is devised to couple the thermal and performance-aware
policies, thus allowing for stronger performance control and
finer thermal control altogether.

The framework was implemented as an extension of Free-
BSD 7.2. The measurement of temperature is performed by
reading the appropriate model-specific register (MSR) for
each core. Additionally, the measurement of throughput is
gathered through the port of the heart rate monitor (HRM).
The evaluation covered two parts: (1) a comparison experi-
ment showing that the thermal-aware policy outperforms
the Dimetrodon framework, and (2) a complete evaluation of
the DPTM framework, showing the successful achievement
of SLA and QoS throughput goals. Bartolini said that future
work may consider improving the thermal model to account

PAGE 4	  | FEBRUARY 2013 | VOL. 38, NO. 1 | mad ’12 | WWW.usenix.org

E L E C T R O N I C S U P P L E M E N T

for thermal interactions among multiple cores, and the idle-
cycle injection technique itself.

Wei Xu asked about the capability of the proposed controller
to work on different applications. Bartolini replied that the
effect of different applications is captured and controlled
using different parameters in the thermal policy that repre-
sent different workloads. Greg Bronevetsky asked whether
the monitoring is required for CPU only or for the whole chip;
he also asked whether the power used for cache was consid-
ered in this framework. Bartolini replied that injecting idle
cycles saves power regardless. As for the cache question, Bar-
tolini acknowledged that it wasn’t considered in this work.

Transparent System Call-Based Performance
Debugging for Cloud Computing
Nikhil Khadke, Michael P. Kasick, Soila P. Kavulya, Jiaqi Tan, and Priya
Narasimhan, Carnegie Mellon University

Soila Kavulya started by stating that automated problem
diagnosis in distributed environments is hard for many
reasons but, most importantly, because system interactions
are complex, systems are large scale, and systems are in pro-
duction environments. One common example of large scale
computing that demonstrates this problem is the MapReduce
framework. Currently, most diagnosis systems focus on
various forms of instrumentation and signatures that lack a
proper representation of a system’s state. This limitation is
because such methods provide information relevant to the
application or node of interest as opposed to the actual sys-
tem state. To address these issues, Kavulya introduced their
method, which principally relies on using a low level abstrac-
tion of the problem: a small set of system calls. The primary
system calls of interest are network related (e.g., accept(),
connect(), socket()), and file system related (e.g., access(),
stat()). The target system of the proposed method is MapRe-
duce frameworks, such as the open source Hadoop.

Kavulya’s justifications for using system calls were that
they (1) capture interaction between application and the
OS, and (2) represent rich sources of both statistical data
(e.g., disk access times) and semantic data (programs/files
accessed). Kavulya mentioned that the main goals of the
proposal are application transparency, minimized false
positive rate, and coverage of both network- and disk-
related problems. Their method assumes fault-free behavior
of MapReduce nodes, identical hardware configuration
of nodes, and synchronized time among the nodes. Their
method also uses the UNIX tool strace to attain system call
instrumentation. This method omits the data sent among
network nodes because of incurred overhead and variability
involved in tracing such calls.

Kavulya described the experimental setup to test the
proposed method: running two MapReduce workload
scenarios on a cluster of five identical machines running
Hadoop 0.20.1. This was followed by a brief summary of both
statistical-based and semantic-based system call diagnosis,
along with a conclusion that diagnosis using system calls is
effective. Future work may consider new ways to cope with
heterogeneous systems, reduce instrumentation overhead,
and distinguish between application-level and infrastruc-
ture-level problems.

Questions mainly focused on the coverage of the diagnosis.
Marvin Theimer asked whether the method can combine
multiple methods of diagnosis, e.g., high and low levels. Kavu-
lya carefully answered no. Ajay Gulati asked about the cover-
age of memory calls and whether swapping can be involved
in the diagnosis. Kavulya replied that although coverage can
be extended to cover such a requirement, system calls remain
unable to capture everything. Marc Chiarini asked about the
diagnosis of cascading failures, as false negatives usually
tend to demonstrate cascading behavior. Kavulya replied that
false negatives are basically linked to thresholds and vari-
ances in addition to different instrumentations, where larger
scope for such scenarios can be captured. Finally, Greg Bro-
nevetsky asked about the idea of dealing with heterogeneity
in general. Kavulya said that two ideas are currently in mind:
using regression and searching for specific key scenarios
among the different nodes.

Tracing
Summarized by Davide Basilio Bartolini (bartolini@elet.polimi.it)

Monitoring the Dynamics of Network Traffic by
Recursive Multi-Dimensional Aggregation
Midori Kato, Keio University; Kenjiro Cho, IIJ/Keio University; Michio
Honda, NEC Europe Ltd.; Hideyuki Tokuda, Keio University

Midori Kato presented Agurim, a technique for efficient and
flexible multidimensional flow aggregation. Mining clusters
in packet traffic is a promising way of capturing varying
characteristics in a data stream; however, since packets
are identified by a five-tuple (i.e., <{source, destination} IP,
{source, destination} port, protocol>), the resulting space is
huge and traditional techniques a re not applicable for on-
the-fly clustering. Moreover, state-of-the-art aggregation
flow visualization tools miss interactivity, failing to provide
easily understandable and valuable information.

The proposed algorithm, Agurim, employs two-stage flow
aggregation in order to provide both coarse- and fine-grained
aggregated flows. This way, an operator can quickly identify
anomalies looking at the coarse-grained data and then use
the fine-grained information for in-depth analysis. The first
aggregation stage is focused on efficiency, while the second
stage achieves higher flexibility, further elaborating the

 | FEBRUARY 2013 | VOL. 38, NO. 1 | mad ’12 | WWW.usenix.org	 PAGE 5

E L E C T R O N I C S U P P L E M E N T

output of the first stage by leveraging R-tree data structures
to manage multidimensional data. During the talk, she also
gave a brief demo showing seven aggregated flows from one
week of recorded traffic and demonstrating the interactivity
of the approach by highlighting aggregated data over differ-
ent time ranges.

Greg Bronevetsky (the workshop chair) asked for more infor-
mation regarding possible use cases and examples of applica-
tion for Agurim. Midori answered that it can be employed
to detect anomalies (e.g., security violations and attacks) by
analyzing the aggregate data. Greg asked for a more concrete
example, and Midori offered a brief demo showing how a
security violation should be visible to an expert operator
examining the aggregated data provided by Agurim.

A State-Machine Approach to Disambiguating
Supercomputer Event Logs
Jon Stearley, Robert Ballance, and Lara Bauman, Sandia National
Laboratories

Jon Stearley presented a state-machine (SM) based approach
to help analyze supercomputer event logs in order to identify
real failures. Initially, he showed how supercomputer logs
are difficult to interpret, using some real-world examples
from a Cray supercomputer. For instance, messages can be
found saying something like “FAILURE: process X exited
normally.’’ He also showed that, analyzing a log from a Cray
supercomputer, 70,000 different events at seven different
points in time were somehow correlated with failures, but
only one of these was a real failure, the others being pro-
grammed reboots or other non-critical events.

Jon illustrated how it is possible to build an SM for log disam-
biguation. The states represent the current status of opera-
tion of the supercomputer (e.g., UP, HARD_DOWN, ...), and
the transitions are triggered by rules based on the log events
(e.g., events indicating that heartbeat signals from a certain
node in a cluster stopped). The transition rules are synthe-
sized by using domain knowledge from the supercomputer
administrators. Jon showed how it is possible, with such an
SM, to automatically analyze a log from a Cray supercom-
puter in order to highlight real failures over non-relevant
messages. He claimed that the results of the analysis were
validated by the supercomputer administrators. The evalua-
tion of the proposed mechanism was based on a Splunk-based
implementation.

Marc Chiarini (Harvard) asked if multiple events could be
used in the transition rules, which could be beneficial in case
correlations exist among different events. Jon answered that
this is possible and more states could be added to the SM to
support this. Ioan Stefanovici, (U Toronto) pointed out that
the structure of log messages may not be well documented.

Jon replied that it is crucial to leverage administrators’
expertise in such cases. Greg Bronevetsky asked whether
this approach would be applicable in environments lacking
Splunk support. Jon answered that porting the work out of
Splunk would not be conceptually complex, but it would imply
some practical difficulties, especially in the management of
different name spaces.

Uncertainty in Aggregate Estimates from Sampled
Distributed Traces
Nate Coehlo, Arif Merchant, and Murray Stokely, Google, Inc.

Arif Merchant concluded the Tracing session with a talk
dealing with how to determine the uncertainty of estimated
metrics in distributed traces. The basic problem, he said, is
that tracing logs from distributed systems sometimes lack
some samples that would have been interesting for analysis.
An example of such a system is Dapper, an always-on system
for distributed tracing and performance analysis employed
at Google. Dapper samples fractions of the remote procedure
calls (RPCs) traffic, but may miss some relevant samples
during runtime.

When samples are missing, metrics can be estimated based
on aggregation of available data on the metric of interest.
When these quantities are estimated, however, a measure
of uncertainty in the estimate is needed; Arif presented a
method for finding unbiased estimates of linear statistics
over RPCs that quantifies uncertainty. The method pre-
sented by Arif is based upon hypothesis testing, and he pre-
sented it using disk accesses as a sample metric. Moreover, he
presented a case study showing how the proposed technique
can be useful in optimizing bin packing and cross-datacenter
reads in a distributed storage environment.

Marc Chiarini (Harvard) asked whether the temporal
granularity of the samples can affect the reliability of the
hypothesis test-based technique. Arif answered that it
depends on how frequent an event of interest is; if an event
is rare, too much information may be missing due to a too-
long sampling period. Arif pointed out that this technique is
devised for frequent events. Greg Bronevetsky asked whether
the proposed technique would be applicable to loops profiling
(e.g., using gprof); Arif replied that it might be possible, but
only if RPCs were present in the loops, since the proposed
technique only considers RPCs.

