
O C T O B E R 2 0 1 3   v O l . 3 8 , N O . 5
E l E C T R O N I C S U P P l E M E N T

 | OCTOBER 2013 | VOL. 38, NO. 5 | HotoS XIV | WWW.usENix.ORg PAgE 1

HotoS XIV: 14th Workshop on Hot topics in
operating Systems
Santa Ana Pueblo, NM
May 13-15, 2013

HotOS XIV Opening Remarks
Summarized by Rik Farrow (rik@usenix.org)
Petros Maniatis, Intel Labs, the PC chair, explained the ground
rules for the HotOS ’13. Presenters had only 10 minutes, with a
few minutes for questions and answers as the next presenter set
up his or her laptop. Each talk session was followed by a half-hour
open mike session, where participants were welcome to speak on
any topic, although the discussions were generally related to ideas
brought up during the previous session or earlier in the workshop.

Petros also introduced a new concept: unconference sessions.
Four sessions were set aside for groups to meet about topics of
their own choosing. Attendees announced topics during a session
on Monday morning and gave reports on the issues, and some-
times on the results of these meetings, on Wednesday, right before
the end of the workshop.

Shuffling I/O Up and Down the Stack
Summarized by Shriram Rajagopalan (rshriram@cs.ubc.ca)

We Need to Talk About NICs
Pravin Shinde, Antoine Kaufmann, Timothy Roscoe, and Stefan Kaestle,
Systems Group, ETH Zurich

Timothy Roscoe began by pointing out that modern NICs have
become complex devices with a variegated set of features, but
operating systems do not provide proper abstractions to access
many of these features. Windows provides different abstractions
for each NIC manufacturer, whereas Linux does not provide any
support to access the hardware functionalities in modern NICs.
Most operating systems as of now cannot optimize performance
of a workload by automatically identifying and leveraging func-
tionalities exposed by the NIC hardware.

Dragonet presents a new network stack design that represents the
protocol state machine in the OS as a dataflow graph. The NIC’s
capabilities are represented as a dataflow graph as well. The two
graphs can be combined in such a way that functionalities not pro-
vided by the NIC hardware can be provided by software compo-
nents in the network stack.

Someone pointed out that graphics folks have taken a similar
approach, and asked whether Mothy could draw a parallel between
the two approaches. Mothy replied that their approach has a simi-
lar flavor; however, graphics cards are heterogeneous and provide
arbitrary multiprocessing capabilities apart from functionality
offload. His team is dealing with fixed function hardware. Some-
one else asked how high should the abstractions go up the stack:
for example, the ability to push computations onto the NICs for

certain workloads (e.g., receiver side scaling). Mothy answered
that they don’t know yet, but that they’d like to be able to offload
processing to the NIC, but they need to track the spatial place-
ment of threads. Brad Karp (University College, London) asked
whether it is possible to automatically capture the NIC’s capabili-
ties in a protocol graph, when its firmware is updated, and if so
wouldn’t they have to update the OS’s protocol graph accordingly.
Mothy responded that you could treat this issue like a bug fix for
bad firmware in the card. Until the firmware is fixed, the OS could
use a different resource graph as a workaround. Their design just
makes it easy to work around these hardware issues.

The NIC Is the Hypervisor: Bare-Metal Guests in IaaS
Clouds
Jeffrey C. Mogul, Jayaram Mudigonda, Jose Renato Santos, and Yoshio Turner,
HP Labs

Jeff Mogul started with a question: Why would anyone want
to run a bare metal guest without a hypervisor? There could be
several motivations, such as performance, security, application/
vendor support for certain software, licensing requirements, and
customer demand. The next question that naturally arises is how
can one run both bare metal guests (BMGs) and virtual machines
in the same cloud? With BMGs, we no longer have a guest OS run-
ning over a hypervisor, so where will the protection boundary be
drawn? Jeff suggested using the Switch/NIC to enforce a hypervi-
sor-like protection boundary for BMGs.

A simple inventory shows that we have several components
already in place. For example, a sNICh provides ACLs with hard-
ware NICs. Remote management can be accomplished via compo-
nents such as HP’s iLO (or equivalents from other vendors, using
IPMI) with little modification. The Remote Management Engine
(RME) at the end host interacts with the cloud controller. Depend-
ing on the requirements of the BMG, the RME configures the
NIC with appropriate protection boundaries by disabling certain
features; however, other things, such as checkpointing, migration,
etc., require guest OS support. Jeff suggested that using an SDN is
not the appropriate solution because BMG-NICs present a cleaner
separation between the edge hardware and the network fabric and
scales better.

Someone asked whether customers who demand bare-metal
guests have concerns with licensing fees. Jeff answered that some
applications cannot run on a VM, and apps would not be able to
tell they were running over a sNICh. Muli Ben-Yehuda (Technion)
asked whether this would still be necessary if the hypervisor had
no performance penalty. Jeff pointed out that performance is just
one aspect. A key driving factor for BMG-NICs is licensing and
support requirements. Someone asked about the problem with
RMEs accessing the main memory, and Jeff replied that because
of their design (the BMC interface used by IPMI) RMEs do not

Conference Reports

E L E C T R O N I C S U P P L E M E N T

 | OCTOBER 2013 | VOL. 38, NO. 5 | HotoS XIV | WWW.usENix.ORg PAgE 2

have a main memory map. Another person asked why the RME is
even relevant. Jeff said that they need someone to control the NIC.
Current systems allow RME to control the NIC. Basically, we are
leveraging something that’s readily available.

Virtualize Storage, Not Disks
William Jannen, Chia-che Tsai, and Donald E. Porter, Stony Brook University

Bill Jannen stated that virtualization works great because of
hardware emulation but has a big performance impact on storage.
For example, we have duplicated storage stacks in both the guest
and the host—things such as page caches, read ahead blocks, etc.—
when using a file-based backing disk. The double caching can
cause correctness problems with certain file system operations in
the event of failure. Bill described an example scenario where the
guest issues an unlink system call on a file and gets an acknowl-
edgement from the host; however, at the host level, the inode infor-
mation still resides in the page-cache. Should the host fail and
come back up, the guest OS’s application would see the deleted file
and might react in an undefined manner.

They proposed separating the media access layer from the file
system. The application interfaces would reside in the guest while
things like I/O schedulers would be at the host. They could then
augment the guest API with performance, ordering hints, etc.

Steve Niel (VMware) claimed that VMware ESX servers do not
have this issue; however, he appreciated the idea that we need to
modularize the storage layer. Ed Yang (Stanford) said that this
also applies to Xen and KVM, and that their example pertains to
the configuration settings for their guest OS. Muli Ben-Yehuda
said that the idea of modularizing certain aspects of storage, such
as file systems, depends totally on the data structures that the file
system uses. The case may be that such modularization is not pos-
sible for a given file system due to the nature of its data structures.

Unified High-Performance I/O: One Stack to Rule Them All
Animesh Trivedi, Patrick Stuedi, Bernard Metzler, and Roman Pletka, IBM
Research Zurich; Blake G. Fitch, IBM Research; Thomas R. Gross, ETH Zurich

Animesh Trivedi stated that I/O performance has changed over
the years. We have moved from disks to flash and will move to
PCM, which represents two to five orders of magnitude perfor-
mance improvement; however, the OS is not leveraging these fea-
tures. We need a set of rich I/O semantics with direct access to
hardware.

High performance I/O stacks work great with disks but don’t per-
form well with NVRAMs. Instead of reinventing the wheel, he
suggested, let’s leverage the technology available in the network-
ing community. Inspired by high performance software-con-
trolled NICs, he proposed user-space mapped I/O channels with
no OS involvement. An even better alternative would be to unify
both I/O stacks. The OS could support a single set of abstractions
for multiple sets of devices. The application would no longer care
whether the storage is local or remote. Animesh said they have

a working prototype that performs two to five times better with
about a half million IOPS.

Muli Ben-Yehuda disagreed with Animesh’s claim that network
performance issues with respect to application access have been
fully solved. Animesh replied that they do not claim that it’s fully
solved. Their opinion is that certain aspects of this space have
been fully fleshed out and they propose to leverage them. For
example, the OS would do a one-time translation to set up the I/O
channel, acting like a control plane, for a very large file transfer.
John Ousterhout (Stanford) asked what if there were a very large
number of small files, which would be doing too many checks
and hurting latency. Animesh agreed that too many data/control
plane switches would have an impact on performance. Ed Bugnion
(EPFL) pointed out that in networks, the socket is the central
abstraction. In storage, its equivalent is SCSI. Their example is to
use a niche network example (direct hardware access) and build a
system on top of it. So at best, it’s a niche within a niche. Animesh
countered that sockets don’t do high-speed transfers of hundreds
of GBs of data. If you need high performance I/O, you need a niche.
Simon Peter (U Washington) asked, what if two applications
want to access the same file? Animesh said that you just remap
the same channels with multiple processors and assume that
the hardware can keep track of the ordering. Andrew Warfield
pointed out that Animesh had focused on the similarities between
the two domains, and asked that Animesh provide a big difference
that is challenging. Animesh replied that networks have no notion
of transactions while storage uses a lot of transactions. We have
no way to roll back a transaction when doing I/O over network
(but we can over storage).

Open Mike
Matt Welsh (Google) asked whether we know the kind of appli-
cations that are driving the kinds of papers that were seen in the
I/O session. Do all applications need these features, such as direct
access to I/O, or is it just a few? Timothy Roscoe responded that
trading applications is a good use case because they cannot afford
the hit on latency. He agreed that the customer base was a small
one and that the application domain for these ideas was small.

Jeff Mogul commented that HPC applications are difficult to
manage as they grow—especially resources, I/O, etc. The con-
cepts presented in the session basically proposed abstractions
that help the application/user easily manage these resources.
Alex Snoeren (UC San Diego) added that, although these papers
proposed to take the hardware capabilities to user space, hard-
ware vendors (e.g., storage) are moving in the other direction
(keeping to kernel space) in an effort to be compatible with each
other. They don’t want user-space libraries directly accessing
their devices and creating compatibility issues.

Muli Ben-Yehuda reiterated Alex’s observation that vendors are
trying to move interfaces to the kernel because of legacy applica-

E L E C T R O N I C S U P P L E M E N T

 | OCTOBER 2013 | VOL. 38, NO. 5 | HotoS XIV | WWW.usENix.ORg PAgE 3

tions. He added that a major issue with direct hardware access
is the loss of ability to migrate VMs and cited SR-IOV as one
example. For enterprises with legacy applications, migration is a
valuable tool compared to direct hardware access. Dave Ackley
(U New Mexico) pointed out that NICs are getting smarter; it’s
the manifest destiny of silicon. Just as GPUs have been growing
in capabilities by leaps and bounds, expect the same thing to hap-
pen with network processing. George Candea (EPFL) wondered
whether a coordinated hardware/software design is needed to get
the desired performance. The current approach is a real hodge-
podge. Andrew Warfield (UBC) said that the current network
stack is a real mess, with 15 vendors and only two of them focused
on performance. Muli reiterated that moving code into user space
wouldn’t work for legacy applications. Steve Hand (Cambridge and
MSR) said that once you bypass the hypervisor, you can no longer
migrate, and people like the ability to do migration. So is this what
customers really want?

Petros summarized by saying that this is a puzzle with multiple
sides. Being able to mix-and-match and optimize for a particu-
lar solution would be nice. All sides have a point here—splitting
things into small pieces, pushing some into hardware.

Edgy at the Edge
Summarized by Jonas Wagner (jonas.wagner@epfl.ch)

The Case for Onloading Continuous High-Datarate
Perception to the Phone
Seungyeop Han, University of Washington; Matthai Philipose, Microsoft
Research

Seungyeop Han introduced the case for onloading continuous
high-data-rate perception onto the phone by explaining how com-
puter vision has reached maturity and enables many applications,
from context-sensitive reminders to tracking the user’s diet. To
perform sensing on the phone for continuous availability, cost, and
privacy is desirable. Trends in memory size, processor speed, and
power consumption indicate that this will be feasible in 2015.

A key optimization for on-phone video processing is using other
sensors to gate the computation. These sensors identify frames
that need not be processed, e.g., due to low light or motion blur, and
discard more than 98% of all frames. This gating framework, com-
bined with privacy concerns and the possibility to share models
and algorithms between apps, calls for implementing video pro-
cessing as an operating systems service.

Vova Kuznetsov (EPFL) asked whether gating is still useful if
interesting frames come in batches. For many applications, gating
still provides considerable energy savings. Matt Welsh (Google)
asked whether this is really an OS problem. Seungyeop replied
that techniques such as gating require multiple resources to be
scheduled and shared between apps. Also, the OS can ensure pri-
vacy in the presence of malicious apps. To a follow-up question on
privacy, Seungyeop replied that there are further ideas: for exam-
ple, filtering an audio frame such that it is possible to identify the

speaker but not the content. When asked whether his work makes
offloading obsolete, Seungyeop said that, although some classes
of applications require the cloud for reasons like low latency, more
effort should go into onloading perception onto the phone.

Making Every Bit Count in Wide-Area Analytics
Ariel Rabkin, Matvey Arye, Siddhartha Sen, Vivek Pai, and Michael J. Freedman,
Princeton University

Wide-area analytics need to cope with huge data volumes that
exceed and outgrow the available bandwidth. Because not all data
can be transmitted to a central location for analysis, existing sys-
tems make static decisions about what data to collect. They incur
high costs for collecting (too) much data, yet are unable to obtain
more data retroactively if the need arises.

Ariel Rabkin presented an alternative architecture in which full
data is stored close to where it is collected. The data is then aggre-
gated, summarized, and transmitted to the user with a precision
and granularity that meets bandwidth constraints. The archi-
tecture supports reasoning about the bandwidth requirements of
queries. Users can interactively define a policy that controls how
results degrade gracefully as bandwidth changes. The OLAP cube
is the chosen data model, because it supports merging, summariz-
ing, and aggregating data automatically according to this policy.

When Doug Terry (MSR) asked about other data models that have
been considered, Ariel replied that they had looked at SQL tables
and MapReduce tuples. SQL tables require too much seman-
tic awareness, especially in the presence of missing data. Alex
Snoeren (UCSD) recalled a similar, more general system where
custom merge procedures could be specified for every data ele-
ment. Ariel replied that such merge procedures are difficult to
write for rich data, and hard to optimize compared to OLAP cubes.
Peter Bailis (UC Berkeley) asked how the system compares to the
Tiny Aggregation Service (TAG) used in sensor networks. Ariel
explained that the focus is less on reliability and more on using the
bottlenecked wide-area link as efficiently as possible.

QuarkOS: Pushing the Operating Limits of Micro-Powered
Sensors
Pengyu Zhang, Deepak Ganesan, and Boyan Lu, University of Massachusetts
Amherst

Pengyu Zhang presented work that pushes the operating limits
of tiny sensors, such as medical implants or self-powered cam-
eras. These harvest energy from temperature gradients, electro-
magnetic waves, or ambient light to charge energy buffers with
a capacity of only few μAh. This severely restricts the amount of
work that can be done in a single charge-discharge cycle, and pre-
cludes the use of conventional sensor-network operating systems.

QuarkOS fragments tasks as much as possible so that individual
fragments stay within the energy limits. QuarkOS efficiently mea-
sures available energy and inserts sleep gaps within fragments to
recharge the energy buffer. Passive RF communication is given

E L E C T R O N I C S U P P L E M E N T

 | OCTOBER 2013 | VOL. 38, NO. 5 | HotoS XIV | WWW.usENix.ORg PAgE 4

as an example: fragments consist of transmitting a single bit.
Another example is image sensing, where sleeps can be inserted
between pixels and even within the different stages of sensing a
single pixel.

The first question was about time scales. Pengyu answered that
one charge-discharge cycle takes about 100μs, and that one
image can be sensed in a few minutes. Somebody then asked
how much energy could be saved by this technique. Pengyu
replied that QuarkOS does not reduce energy consumption but
extends the operating limits of sensors so that they can still
execute tasks, albeit slowly, when limited energy is available.
Mike Freedman (Princeton) asked at what scale QuarkOS can be
applied. Is there a niche between battery-powered devices run-
ning conventional sensor OSes and micro-motes running with-
out OS? Pengyu answered that their experiments used the Intel
WISP architecture, which fits into this category. These devices
have the advantage of being much easier to use than really small
motes, where functionality needs to be embedded in hardware.
John Ousterhout (Stanford) inquired about the limits of the
power buffer. Pengyu explained that larger buffers are possible
but disadvantageous: they require over-proportionally longer
charge times, need more energy to reach the operating voltage,
and cause more heat to be emitted during the discharge.

Open Mike
The open mike session started with Jonas Wagner (EPFL) ask-
ing whether partial information from low-rate video processing or
low-bandwidth wide-area analytics is really more beneficial than
the traditional case where users see full information or none at all.
Ariel Rabkin replied that partial information is less scary than it
sounds, and definitely useful.

The discussion continued around onloading vs offloading tasks
to phones. There are many forms of offloading, some of which are
well received. For example, Web sites can be fetched and rendered
in the cloud, and be streamed to the phone at the right resolution.

Another topic that was raised was whether hardware could help
with fragmenting tasks into even smaller units than what is pos-
sible with QuarkOS.

Be More Tolerant, but Not Too Tolerant
Summarized by William Jannen (wjannen@cs.stonybrook.edu)

Failure Recovery: When the Cure Is Worse Than the Disease
Zhenyu Guo, Sean McDirmid, Mao Yang, and Li Zhuang, Microsoft Research
Asia; Pu Zhang, Microsoft Research Asia and Peking University; Yingwei
Luo, Peking University; Tom Bergan, Microsoft Research and University of
Washington; Madan Musuvathi, Zheng Zhang, and Lidong Zhou, Microsoft
Research Asia

Zhenyu Guo began with an explanation of Microsoft Azure’s leap
day bug as an example of how efforts to recover from faults can
actually do more harm than help. He analyzed service failures
at major companies, and described three of several categories of
common misbehaviors: resource contention, “recovered” software

bugs, and service dependencies. Zhenyu argued that any failure
recovery effort should be engineered to do no harm, because many
of the bugs he described led to cascading failures that brought
down many healthy system components when trying to recover
from a small number of faults.

Zhenyu noted that one element commonly missing in failure
recover design is systems thinking—the process of understand-
ing how things interact with a system as a whole. Some decisions
may seem correct locally, but are not necessarily globally correct.
Systems thinking must be applied in all phases: design, testing,
and deployment.

Petros Maniatis asked how easy it is to determine whether an
action will do harm or not. Zhenyu explained that it is not easy,
and that they have identified challenges in each step of the
development cycle. There is no single solution that can solve all
 problems.

Someone posited the idea that systems thinking might result in a
bunch of ground states that the system falls back into rather than
cascading failures. In the context of the cloud, ground states might
result in the cloud not processing jobs, and therefore not making
money. A guiding principle might instead be “don’t lose money,”
rather than “do no harm.” Risking cascading failures might be
better than running the risk of not making money. Zhenyu agreed
that this is a concern, but said that systems thinking is applicable
in many situations.

John Ousterhout wondered whether the real problem was that
error recovery code never gets debugged; it happens infrequently,
but if developers knew it was there, they would fix it.

Toward Common Patterns for Distributed, Concurrent,
Fault-Tolerant Code
Ryan Stutsman and John Ousterhout, Stanford University

Ryan Stutsman noted that many current applications scale to sup-
port billions of users, and developers write code that is distrib-
uted, concurrent, and fault tolerant. When managing thousands of
logical threads of execution, the control flow must be adaptive and
recover from failures easily, which impacts the way that programs
are written. Developers have no control over when faults occur;
traditional imperative code doesn’t work, and execution history
cannot be relied on. Ryan argues that it is only the state of the cur-
rent system that really matters, and that programs should take
steps based solely on state. While working on RAMCloud, they
developed rules, tasks, and pools as a pattern for writing fault-tol-
erant code.

Ryan described rules, which are predicates based on actions.
Actions fire in response to whatever conditions happen to be cor-
rect at the given moment. He explained that tasks group rules
together with the state that they act on. Each task also has a goal,
which is an invariant that the task is to achieve or maintain. Pools

E L E C T R O N I C S U P P L E M E N T

 | OCTOBER 2013 | VOL. 38, NO. 5 | HotoS XIV | WWW.usENix.ORg PAgE 5

group tasks for a subsystem. In this pattern, execution order is
determined by state instead of by some predefined ordering, and
the execution order can adapt dynamically.

Mike Freedman noted that one way to think about this is that
developers are designing systems that represent finite state
machines. But it is more general than that, and you don’t want
to hard code a set of states; writing with this pattern should use
actions and triggers. He wondered whether people using this
model often write static state machines. Ryan responded that the
patterns he’s noticed have not had explicit state tags. The condi-
tions apply implicitly. The model is not really about explicit states,
but how to reason locally.

Peter Bailis wondered whether Ryan could compare their
approach to rule-based languages like Bloom. Ryan was not famil-
iar enough to speak about Bloom, but he thinks about the problem
in a similar manner to how model checkers work: the programmer
defines conditions and invariants.

John Wilkes observed that in practice, people actually write little
state machines, and he thought that the idea of small-scale state
machines applied lightly is a powerful idea. Ryan was concerned
with the idea of explicit state machines for reasons of scalability.
He would like to be able to reason about a system with just a local
view of its state.

Escape Capsule: Explicit State Is Robust and Scalable
Shriram Rajagopalan, IBM T. J. Watson Research Center and University of
British Columbia; Dan Williams and Hani Jamjoom, IBM T. J. Watson Research
Center; Andrew Warfield, University of British Columbia

Shriram Rajagopalan noted that cloud infrastructure scales, and
applications should be able to scale easily on that infrastructure
as work increases. He proposed the capsule abstraction, a modi-
fication of applications and operating systems so that they sup-
port scaling at session granularity. The proposal would decouple
sessions from applications; mobile sessions would allow balanced
scale-out and scale-in, and replicated sessions would allow effi-
cient and transparent fault tolerance.

Each layer must annotate the state that it wants to export, and
each capsule must explicitly name its dependencies. A vertical
chain of dependencies is called a “slice,” which can represent the
entire running state of a session. A centralized entity would be
responsible for knowledge of capsules at each layer, and it would
be able to unplug a slice, move it to another machine, and then plug
the capsule back in at the destination. Shriram argued that elas-
ticity and fault tolerance support should be provided at the system
level, which the capsule abstraction provides.

Steve Muir commented that capsules were conceptually simi-
lar to Google’s app engine, and he inquired about the tradeoffs of
being intrusive. He noted that for many Web applications, the fail-
ure model is simply to drop the connection and restart. Shriram
replied that if a single app engine is overloaded, there is no way to

shed load dynamically and wait for the request to terminate. App
engine scaling occurs at request boundaries.

Erez Zadok inquired as to which entity is responsible for detecting
and setting dependencies. Shriram replied that the developer of
every layer is responsible for setting dependencies and for regis-
tering the capsule. Erez followed up by asking about a case where
there are many dependencies and inter-dependencies, to the point
that it is cheaper to migrate the whole VM. Shriram noted that
most session-based applications do not have dependencies that are
so widespread.

Peter Druschel (MPI-SWS) noted that capsules were cheaper
than process migration, but more intrusive. Historically, process
migration has lost out in favor of VM migration, and Shriram
was asked what made him think this trend would reverse. Shri-
ram contended that there is a tradeoff; the coarser the granular-
ity of migration, the less benefit in terms of fault tolerance and
 elasticity.

Timothy Roscoe asked which sessions would work well in the
model. Some sessions might be hard to slice, and for sessions that
are short-lived, there would be no point to migrating. Shriram said
that for servers with millions of requests per second, this would
not make sense, but that normal Web commerce applications
have sessions that are not short-lived. A few minutes is more than
enough time to overload a machine, and it is a large enough win-
dow that a machine can fail, causing a loss of all session state.

Open Mike
The session began with a discussion of Ryan Stutsman’s work.
Petros Maniatis wondered about the case where two rules created
an infinite loop, where each triggered the other. Ryan responded
that there is no way to prevent programmers from writing infinite
loops, but goal states help. If reaching a goal state takes too long,
log messages are generated to help identify the problem. How one
could ensure that atomic session code could be kept error free,
specifically in the case of memory allocation failure, was also
asked. Ryan responded that due to the expense of malloc, they
mostly use preallocated buffers. He said that large external fail-
ures cannot be ignored, but local error handling can be done. Ariel
Rabkin noted that a consequence of state machines being implicit
is that it becomes difficult to ensure that progress is being made.
Ryan commented that timers help, just as they help to detect infi-
nite loops.

Erez Zadok shifted the discussion back to cascading failures. He
noted that many of the examples from Zhenyu’s talk suggested
that a global view would allow better job handling and recovery.
He noted that it might be difficult for a centralized controller to
manage large systems, and wondered if a distributed version was
considered. Erez likened the situation to current discussions in
the world of electrical grid systems, where buildings or city blocks
could disconnect themselves from the grid in the case of failure.

E L E C T R O N I C S U P P L E M E N T

 | OCTOBER 2013 | VOL. 38, NO. 5 | HotoS XIV | WWW.usENix.ORg PAgE 6

Zhenyu replied that restricting failures to containers would help.
He also noted that reusing existing failure detection mechanisms
is useful.

The session concluded with further discussion of escape capsules
and the difficulties that arise when retrofitting capsules to soft-
ware stacks that were not designed with capsules in mind. Shri-
ram noted that developers may not identify all state that needs to
go into a session, and that plugging and unplugging capsules is not
an easy job, especially in the presence of unpredictable processes
like garbage collection.

Biiiig
Summarized by Seungyeop Han (syhan@cs.washington.edu)

Large-Scale Computation Not at the Cost of Expressiveness
Sangjin Han and Sylvia Ratnasamy, University of California, Berkeley

Sangjin Han presented Celias, a new programming model for
large-scale computation. He started by reviewing the MapReduce
family (including Dryad and Spark). Although those frameworks
support bulk transformation of immutable data, they are not well
suited to fine-grained updates on the data set. In their experi-
ments with an iterative MapReduce job for k-hop reachability,
they found that overhead takes more than 95% of the whole com-
putation. Further, MapReduce cannot handle dynamic dataflows
evolving at runtime. Sangjin proposed a new solution to fix those
problems while preserving scalability and the fault tolerance
properties of MapReduce.

Their programming model, Celias, is based on the classic pro-
gramming model, Linda. Whereas Linda uses the process model
and does not have any automatic scaling or fault tolerance fea-
tures, Celias introduces microtasks as the computation model
and uses tuplespace as data model. Microtasks are written as
signature and code, and are triggered by the availability of tuples
that match with the signature. The used input tuple is then auto-
matically replaced by the output tuple. This programming model
allows automatic scaling and fault tolerance without the interven-
tion of programmers. Additionally, Sangjin noted that Celias is at
least as expressive as MapReduce.

Matt Welsh (Google) commented that sometimes the immutable
property is important, especially for rerunning as a batch, and it is
important to find killer apps. Michael Freedman (Princeton) said
that small tasks would kill performance with frequent I/O. John
Ousterhout (Stanford) asked about the consistency issue. Sangjin
answered that Celias is relying on atomic operations to ensure
that updates are consistent. Petros Maniatis (Intel Labs) asked
whether Optimus over Dryad would not solve the problem. Sangjin
explained the approach is more like SQL and SQL query optimiza-
tion and does not give the expressiveness that Celias provides.

When Cycles Are Cheap, Some Tables Can Be Huge
Bin Fan, Dong Zhou, and Hyeontaek Lim, Carnegie Mellon University; Michael
Kaminsky, Intel Labs; David G. Andersen, Carnegie Mellon University

Bin Fan presented a new hash table that can serve a very large
number of entries entirely from memory. Their target is when keys
could be large whereas each value costs a few bits. He showed an
example of the hash table storing UserID → online/offline. In the
traditional hash tables storing those entries, some rows are not
utilized. Additionally, storing keys to avoid collision takes another
large space. Overall, it requires O(k+v) bits/entry.

By contrast, Bin’s team suggested a new data structure to save
memory. The core idea is to throw away the keys and to do brute
force to avoid collisions. To do so, their algorithm, SetSepara-
tion, enumerates hash functions in a hash function family to find
the hash function that maps all keys in a group to correct values.
Then, it records the parameter to get the hash function. Dividing
the entire input into small groups, their scheme can handle a large
number of keys/values. By the algorithm, their data structure uses
only 0.5 + 1.5v bits/entry. Bin noted that the algorithm has a caveat
that it cannot handle a membership function because it does not
maintain keys by itself. In evaluation, SetSeparation uses only
3.88 MB for 16 million entries, whereas the STL (Standard Tem-
plate Library) map uses 869.46 MB and the lookup speed is faster.

Jonas Wagner (EPFL) asked how Set Separation handles updates.
Bin answered that it needs to keep track of which keys are in the
group in external storage. Volodymyr Kuznetsov (EPFL) com-
mented that STL map is not a hash table and asked whether
lookup and update cost would depend on key-size. Bin noted they
were using a hash map and lookup is still constant although a little
bit tricky. Michael Freedman (Princeton) asked whether figur-
ing out which group the query key is in is not key-dependent. Bin
replied that determining it is again based on hashing. Roxana
Geambasu (Columbia) asked about concrete applications, noting
that it has restrictions. Bin mentioned software routers as one
example. Dan Williams (IBM Research) commented that it would
be expensive for the cases with longer values. Bin said that it needs
to be done per-bit for a multi-bit case, and the benefit decreases for
longer values.

Wanted: Systems Abstractions for SDN
Sapan Bhatia, Andy Bavier, and Larry Peterson, Princeton University

Sapan Bhatia started by noting that iptables were functioning
as a Swiss Army knife for many network configurations: while
iptables is a powerful tool, it has the reputation for being tedious
to use and error-prone. Additionally, changing configuration
leads to resetting state, such as policies or routing entries. The
research community has provided useful results, including new
network architectures, domain-specific languages (such as Click),
OS extensions, and finally SDN. In practice, however, nothing is
changed and configuration still involves iptables.

E L E C T R O N I C S U P P L E M E N T

 | OCTOBER 2013 | VOL. 38, NO. 5 | HotoS XIV | WWW.usENix.ORg PAgE 7

Sapan explained that they have taken the best of academic ideas
with standard tools. He presented NativeClick, which combines
Click Modular Router’s language to specify the graph and native
runtime overlaid on the Linux networking stack. More specifi-
cally, elements and ports of Click are replaced with executable
scripts and virtual links. Key mechanisms allowing this are from
the network container to isolate route tables, policies, and virtual
links. For connection to SDN, Sapan noted that expanding SDN
to the end host is important. Also, he showed an SDN perspective
consisting of vdev, controller, and processes in a middlebox.

Andrew Baumann (MSR) asked how to debug iptables since it
requires understanding the Click abstraction. Sapan noted that
it is an open problem in the generated codes, and current iptables
itself is hard enough to debug. John Wilkes (Google) asked about
evaluation. Sapan said that it is more community-driven, and
users do not complain about it. Shriram Rajagopalan (UBC) com-
mented that the SDN connection is a bit weak. Sapan noted it is
about how you do middlebox functions and that the systems and
the SDN approaches meet, since it achieves the end-result of SDN
through OS functions.

Open Mike
The open mike session started with a question from Siddhartha
Sen (Princeton) to Bin Fan about whether inserting lots of new
keys could affect the performance. Bin answered that each group
can handle a small number of keys, and thus more than 30 keys per
group may require rehashing. Erez Zadok (Stony Brook Univer-
sity) continued with a comment that this is somewhat similar to
Bloom filters and worth exploring the similarity. Bin replied that
the difference is that their mechanism does not make any mis-
takes for the known keys, which a Bloom filter might do. One per-
son from MSR wondered whether Bin’s team used the same code
for underlying hash functions in CHD (the Compress, Hash, Dis-
place algorithm) when they evaluated. Bin answered they used the
reference code from Google; a coauthor, Hyeontaek Lim (CMU),
added that a number of entries would degrade CHD performance
as well, and thus changing the underlying hash function would not
change the trends.

There was a big discussion about applications for system research.
Brian Noble (U Michigan) said that everyone should spend time
finding someone doing computationally intensive projects. Timo-
thy Roscoe (ETH) mentioned that computational finance and
sociology will be interesting fields in terms of applications, and
John Wilkes (Google) added biology and medicine. Petros Mania-
tis (Intel Labs) said that applications do not need to be solid ones,
but it does make the work plausible. John Wilkes commented that
for something big, we do not have an application yet, and we need
to think not of applications, but problems and how we can solve
them. Matt Welsh (Google) said that we have to get inspiration
from problems out there and need to do generalization. Timothy
Roscoe said that he had found someone with a big problem: he had

teamed up with people who had fled the big banks and investment
companies, as well as people still working at Credit Swiss, to do
work on financial modeling. He has also worked with the Swiss
Federal police in tracking counterfeited watches shipped around
the world.

Someone commented that many people need help identifying their
problems. Brad Karp (UCL) gave an example of block boundaries
that are used for many other problems, although not for applica-
tions, but it is a fundamental problem of bigger systems.

Catching Up in the Clouds
Summarized by Deian Stefan (usenix@deian.net) and Edward Yang (ezyang@
cs.stanford.edu)

The Case for Tiny Tasks in Compute Clusters
Kay Ousterhout, Aurojit Panda, Joshua Rosen, Shivaram Venkataraman,
Reynold Xin, and Sylvia Ratnasamy, University of California, Berkeley; Scott
Shenker, University of California, Berkeley, and International Computer
Science Institute; Ion Stoica, University of California, Berkeley

In data-parallel computing, the straggler problem arises when a
single task runs at a much slower rate (e.g., because it’s running
on a slow machine) than other tasks, slowing down the whole job.
Yet, we typically schedule large batch tasks to ensure high cluster
utilization. This not only amplifies the straggler problem, but also
gives rise to another problem: cluster responsiveness. By running
long batch tasks, short interactive jobs may need to wait on the
order of seconds or minutes before being serviced, effectively ren-
dering the cluster unresponsive.

To address these issues, Kay Ousterhout argued that all data-par-
allel jobs should be broken down into tiny tasks. This addresses
the straggler problem by ensuring that workloads are evenly dis-
tributed across machines; fine-grained scheduling ensures that
slow machines are assigned fewer tasks than fast machines. A
simulation on Facebook workloads showed that using tiny tasks
would improve the response time by roughly 5x. In a similar fash-
ion, the tiny tasks paradigm bridges the gap between cluster uti-
lization and responsiveness: long-running batch jobs are broken
down into thousands of tiny tasks, allowing short interactive jobs
to be interleaved as launched.

There are many challenges in implementing an architecture that
employs the tiny task paradigm. To narrow the challenges, the
authors focus on applying the model to data-parallel computations
similar to MapReduce. In such a scenario, a task is typically I/O
bound (reading input data stored on disk), and, to ensure high disk
utilization, a tiny task must run for at least a few hundred milli-
seconds—a duration they argue that is acceptable even for Web
applications. This is challenging as it requires changing the pro-
gramming model to break a job into many tiny tasks, reducing the
launch of a task to a few milliseconds, implementing a task sched-
uler that handles millions of decisions per second, and changing
the underlying distributed file system to handle many small reads;
however, using similar techniques to Spark and FDS, the authors

E L E C T R O N I C S U P P L E M E N T

 | OCTOBER 2013 | VOL. 38, NO. 5 | HotoS XIV | WWW.usENix.ORg PAgE 8

believe they can address some of the concerns; developing a practi-
cal architecture, although promising, is part of their ongoing work.

Mike Schroeder (MSR) asked for a characterization of the jobs
for which the straggler problem was not solved by their solution.
Ousterhout noted that tiny tasks require a change in the program-
ming model, but programmers can ignore this and, for example,
can still write code that contains infinite loops—in such cases,
tiny tasks won’t do much to improve the situation. Jeff Mogul
asked how long a job should be, as opposed to how long it can be
(i.e., short enough to read 8 MB as to use the disk efficiently).
Ousterhout noted that the few hundred milliseconds is consistent
with the shortest duration of data-analytics jobs they’ve observed
in practice. Hyeontaek Lim pointed out that dividing a 40,000-
task job into 4 million won’t necessarily be “better”; what size jobs
should be sub-divided? Ousterhout explained that they had looked
into the space to find characteristics of different jobs and found
that jobs with a few tasks were the ones with long-running tasks;
finding the precise point where diving into more tasks becomes
inefficient is part of future investigation.

Using Dark Fiber to Displace Diesel Generators
Aman Kansal, Microsoft Research; Bhuvan Urgaonkar, Pennsylvania State
University; Sriram Govindan, Microsoft

High availability is a lot of work. A server may be protected
against power failure by a UPS; but this is no good if your network
gateway goes down: datacenters must also install diesel genera-
tors to protect against utility failure; but this, too, fails in the event
of physical disaster, so your data must be georeplicated. Highly
available services are deployed with multiple layers of redun-
dancy, and this redundancy is expensive. Because high availability
services must always be georeplicated, Aman Kansal suggested
relying solely on georeplication for availability, reducing the avail-
ability needs for any given datacenter.The authors argue that
“Geo-distributed Bunches of Datacenters” (or GBoDs) could be
practical, but there are a number of questions to answer. For one,
how much can one reduce DC availability before global availability
is affected? Assuming independent failure, one can calculate this
out: for n=10, one can do with 0.1% failure probability rather than
0.001%. A bigger question is how applications need to adapt to this
new scheme. Some methods of georeplication, such as sharding
distributed state, no longer work as everything must be replicated
everywhere—addressing this is an open research problem. Band-
width, however, is not a problem: the authors propose that the dark
fiber connecting these datacenters be used to carry out the large
amounts of data transfer necessary to perform full replication.

Timothy Roscoe pointed out that building a new datacenter takes
a really long time: on the order of seven months, which is quite dif-
ferent from spinning up a new server. Jeff Mogul noted that as the
reliability of single datacenters decreases, the error bars on your
availability calculation increase. One might do OK if there is an
error margin built into your availability figures; but that mar-

gin costs money, exactly what GBoDs are trying to save. Edouard
Bugnion asked which workloads could be distributed this way,
and Aman answered that without software redesign, read-only
software is the only thing that can be done; applications with real-
time data writes are considerably more difficult.

Towards Elastic Operating Systems
Amit Gupta, Ehab Ababneh, Richard Han, and Eric Keller, University of
Colorado, Boulder

Amit Gupta said that one of the main benefits of cloud-based sys-
tems is the ability to elastically change the amount of resources
allocated to an application according to demand; however, we
presently place the burden of elasticity on apps: an app has to, a
priori, be designed to operate in a cloud environment. The devel-
oper must design the app such that it can distribute the workload,
on demand, among different instances; handle data consistency
issues (e.g., sharing across instances); and monitor load as to
decide when to expand or contract the number of nodes.

Rather than continue building apps with elasticity in mind, Gupta
argued for making elasticity an OS primitive. ElasticOS would
allow applications to be built without any notion of elasticity,
while transparently expanding and contracting to accommodate
different workloads. To this end, they propose using elastic page
tables, i.e., page tables that map virtual addresses to machine/
physical addresses, as a way to allow an application to expand
when memory on other nodes becomes available and is in demand.
Different from previous distributed shared memory (DSM) sys-
tems, they, however, do not replicate data pages across machines.
Instead, paging-in remote tables results in them being moved from
the remote machine. This avoids the need for coherency proto-
cols that have plagued DSM systems; however, to take advantage
of locality, they propose migrating the process/thread execution
context once the number of pages that are being pulled in reaches
a certain threshold. Unlike data pages, this can be quite efficient
because caching multiple copies of code pages does not require
DSM-like protocols. Gupta concluded the talk with the remark
that although various issues (e.g., fault tolerance and elastic net-
work I/O) need to be addressed, their preliminary Linux imple-
mentation has shown promising measurements.

Jay Lorch (MSR) was skeptical about the approach, as it wound up
leading researchers on the same path as DSM. In response, Gupta
noted that their work differs from the DSM efforts in two impor-
tant ways: DSM heavily relied on replication and kept execution
context fixed (except for process migration); in their work, they
keep a unique copy of data and move execution contexts when
appropriate. Andrew Warfield noted that moving contexts around
is expensive (because it requires transferring roughly a page of
context information) and asked why moving the context to the
data is a good idea (because this happens often when stretch-
ing to a large number of nodes). Gupta noted that they adopted
a hybrid approach: they pull data until they notice that they can

E L E C T R O N I C S U P P L E M E N T

 | OCTOBER 2013 | VOL. 38, NO. 5 | HotoS XIV | WWW.usENix.ORg PAgE 9

exploit locality, and at that point they jump. He further noted
that for certain workloads this approach may not work, but this
requires further investigation. Timothy Roscoe brought up the
issue of memory efficiency: if code pages are replicated to allow
fast context transfers, at what point does this approach become
inefficient? Gupta noted that in data-intensive applications, such
as MySQL, the number of code pages is much lower than the cor-
responding number of data pages, so they do not anticipate a large
overhead if code is carefully replicated across a (part of the) data-
center. The last questioner asked whether there is any reason to
believe that cluster-wide parallelization is going to be better than
multicore. In response, Gupta noted that a process on a single
node is inherently bound by memory and they intend to break that
 barrier.

Open Mike
Rik Farrow provided the quote of the session: “I think you live in
an alternate reality called Google.”

Everyone seemed to agree about tiny tasks for cluster computing
(except one guy from Berkeley), so the conversation turned to a
discussion about GBoDs and elastic computing.

The subject of datacenters was close to the heart of many of the
industrial members of the audience. Two interesting topics came
up during the ensuing discussion. The first was political reasons
why applications may not be georeplicated; for example, a coun-
try may have strict data privacy laws that prevent data from being
replicated across its borders. Jeff Mogul mentioned that this was
exactly the case, and that they had implemented selective geo-
replication. John Wilkes (Google) brought up the cost calculation
that companies are constantly doing when considering datacenter
administration. Some infrastructure has 11 datacenters deployed
to serve 10 datacenters’ worth of load, with the last datacenter
running compute jobs on the extra capacity. As opposed to infra-
structure such as Google AppEngine, which has excessive redun-
dancy, GBoDs may not be a win in such situations. Additionally,
when a datacenter goes down, there is the cost of all the hardware
that is not being utilized in that datacenter; one participant noted
that making sure that this hardware is not wasted is worth at least
some money.

The response to the elastic computing talk had been considerably
more prickly, and so Jeff launched a new discussion by pointing
out that ElasticOS was targeted at being fully backwards-com-
patible, whereas tiny tasks and datacenters asked programmers to
change their programming model. “Aren’t we underestimating the
value of not changing applications?” Matt Welsh responded that
at Google, “We are constantly changing our applications to adopt
new programming models.” This led to Rik Farrow’s response: “I
think you live in an alternate reality called Google.” There was
some debate whether or not MapReduce was an example of a new
programming model that had been rapidly taken up by non-Google

programmers. Lim countered by stating that Hive/Pig were used
by people who looked at MapReduce and said, “We want SQL.”
Depending on who you ask, the majority of MapReduce jobs are
written in these languages.

Others were confused about whether or not ElasticOS bought
anything in an era where machines with 1 TB memories could
be purchased. Moving around all this data, especially in a fail-
ure tolerant way, would be difficult. “At some point,” one partici-
pant commented, “won’t brute force just win out?” The authors
acknowledged this, and argued that you’d have to make locality
assumptions about the usage of 1 TB of memory.

Correct, Secure, and Verifiable
Summarized by William Jannen (wjannen@cs.stonybrook.edu)

Toward Principled Browser Security
Edward Yang, Deian Stefan, John Mitchell, and David Mazières, Stanford
University; Petr Marchenko and Brad Karp, University College London

Deian Stefan noted that the Web has evolved into an application
platform. And although traditional operating systems provide
applications with page protection and file system permissions,
the browser must rely on the same origin policy (SOP) to protect
data. There are exceptions to strict isolation in the SOP; on the
one hand, these exceptions allow developers to build complex,
information-sharing apps; on the other hand, exceptions can lead
to leaks of sensitive data.

Deian listed several remedies for SOP shortcomings, such as the
content security policy (CSP) and cross-origin resource sharing
(CORS), but noted that such measures are coarse-grained, static,
and inflexible. He proposed a more principled approach—to use
information flow control (IFC) as a browser security primitive.
Browser-based IFC would do more than just emulate the SOP; it
would allow execution of untrusted code on sensitive data. A strict
base policy could enforce origin non-interference, but the frame-
work would allow flexibility and fault isolation.

Matt Welsh asked about the proposal’s implications on both
browser and Web API designs, and whether it would require a
change to all browsers and all API code. Deian noted that the
proposal would require browser modifications, but it would not
require a modification of JavaScript; it would be just another API
that developers could use. Deian was then asked about memory
and performance overheads, and the potential implications that
overheads would have in the browser performance war. He replied
that although he did not have numbers on hand, there would be
no impact on the performance of existing code. The proposal is
effectively an opt-in and coarse-grained approach. Don Porter
requested some implementation insights. Deian responded that it
is implemented as a whole new API. They leverage Gecko’s com-
partment model, with all implementation done at the language
level.

E L E C T R O N I C S U P P L E M E N T

 | OCTOBER 2013 | VOL. 38, NO. 5 | HotoS XIV | WWW.usENix.ORg PAgE 10

Deian was asked to discuss the differences between their proposal
and FlowFox from CCS. He explained that the FlowFox mecha-
nism was for JavaScript only, was not opt-in, and could break
existing Web sites; also, it does not support declassification. Ash-
vin Goel (U Toronto) asked how to ensure that attackers could not
simply bypass checks, especially in the presence of browser bugs.
Deian noted that avoiding bugs is difficult, but that they leverage
Gecko’s compartment model to isolate memory spaces.

Volodymyr Kuznetsov (EPFL) asked about side channels. Deian
commented that this is an extension of their previous work that
does address some side channels, but with respect to external
timing channels there is not much they can do. Peter Bailis asked
whether an opt-in policy would allow adversaries to hide in legacy
content. Deian clarified that the proposal would not impose on
existing Web sites, but a Web site that uses the API would be
 protected.

-OVERIFY: Optimizing Programs for Fast Verification
Jonas Wagner, Volodymyr Kuznetsov, and George Candea, École Polytechnique
Fédérale de Lausanne (EPFL)

Jonas Wagner noted that there are many tools that prove the
safety and correctness of software, but that these tools are rarely
used in practice because often they are slow or hard to use. One
reason that existing tools are slow is because they receive the
wrong kind of input—a performance-optimized binary; the time
it takes to verify a program can be made significantly faster by
compiling specifically for verification instead of for execution on
a CPU. As an example, branches are costly for verification, and
equivalent branch-free code often can be verified more easily.

Jonas proposed a compiler switch to enable verification optimiza-
tions, much in the way -g is used for debugging, and -O3 for perfor-
mance. The -OVERIFY flag would signal the compiler to preserve
high-level information, favor optimizations that ease verification,
annotate the program, and generate runtime checks so that verifi-
cation tools can easily detect bugs. They actually have an imple-
mentation that they have tested.

Ariel Rabkin asked whether performing these optimizations inside
the compiler or inside the verification tool itself makes more
sense. He also wondered whether verification time was really
a limiting factor. Jonas noted that the time it takes to verify is
important; a drastic cost reduction would not only save developer
time, it could change the ways that verification tools were used,
to the extent that they potentially could be used at every commit.
And one of the principal advantages of using a compiler flag is that
it does not require any changes to existing verification tools.

Ariel then asked if the same tweaks are valuable for all verifica-
tion tools. Jonas explained that there are different types of tools;
their prototype, -OSYMBEX, generates code optimized for sym-
bolic execution tools. Martín Abadi then posed an idea: what if a
compiler could generate several different versions of the binary,

each optimized for verifying a particular property? Jonas noted
that this would work particularly well for finding concurrency bugs.

When Andrew Birrell (MSR) asked about high-level information
that can’t be transferred down to assembly, Jonas remarked that
a binary with debugging information has complete source code,
but that not all information is necessary. High-level types, and
information about which variables are local, global, or thread local
would be helpful.

Global Authentication in an Untrustworthy World
Martín Abadi, Andrew Birrell, Ilya Mironov, Ted Wobber, and Yinglian Xie,
Microsoft Research

Andrew Birrell gave a quick recap of authentication with X.509
certificates, noting many positive features: authentication is com-
pletely decentralized, non-hierarchical, and worldwide. Addition-
ally, X.509 is pervasive and quite secure; however, Andrew pointed
out that being quite secure is almost as bad as not being secure at
all. He used a few high-profile examples of failures to prove this
point. The underlying problem is the large scale of trust—the rely-
ing party trusts every CA in the delegation chain, not just the root
or the leaf. Intermediate CAs are all uniformly powerful and can
write a certificate for any name. Andrew argued that although
non-hierarchic authentication is essential, uniform trust of world-
wide CAs does not work. Local policies are a better approach.

Andrew then discussed the details of their data set. A 2010 EFF
data set was parsed and then supplemented with additional data
collected in 2012. In total, 7.8 million certificates were acquired
from 22.7 million TLS handshakes, and the details were organized
in an SQL database. Although the database enables ad hoc queries,
the data is too large for ad hoc analysis; they instead performed
cluster analysis, choosing a set of 18 features that were thought to
be interesting, including key length, country, trusted root, etc. The
result was a set of 28 tight clusters with few outliers.

Andrew presented uses for the data set, such as a user-controlled
policy engine. The database could be queried to make trust deci-
sions. Policies could be designed by experts and selected by the
end user.

Mike Freedman wondered why SPKI never took off, given that it
allows chained delegation. Andrew responded that SPKI allowed
Web-of-trust-like things, but clearly there was not enough demand.
People seem quite happy with the current situation using X.509,
except that it breaks two times per year. Deian Stefan asked about
data access. Andrew hoped that Microsoft would allow the data
set to be made public, but he noted that the 2010 EFF data set is
available.

Petros Maniatis asked about the implementation of any policies
that might have made sense for Microsoft, and whether Andrew
had evaluated how many Web sites had such policies “turned off.”
Andrew joked that had they done this evaluation, it would have
been an SOSP paper, but they are currently working on it.

E L E C T R O N I C S U P P L E M E N T

 | OCTOBER 2013 | VOL. 38, NO. 5 | HotoS XIV | WWW.usENix.ORg PAgE 11

Automated Debugging for Arbitrarily Long Executions
Cristian Zamfir, Baris Kasikci, Johannes Kinder, Edouard Bugnion, and George
Candea, École Polytechnique Fédérale de Lausanne (EPFL)

Cristian Zamfir explained that the debugging process, identify-
ing and fixing the root cause of a program failure, differs during
development and production. During development, the gdb record
option can be used to reverse step from the point of failure, but in
the production world, a core dump from a segmentation fault can-
not be reverse-stepped. Although production level record support
is possible, overheads may be prohibitive. The question, then, is
what can be done with limited information in production systems?

Cristian proposed reverse execution synthesis (RES), which takes
as input a program and its core dump, and outputs an execution
suffix that would lead to that core dump. He noted a key insight
is that there exists a large class of programs for which the root
cause is close to the actual point of failure, making the search
space manageable; however, the challenge is inferring the paths.
This can be done by recording constraints through branches and
checking against the core dump state. By applying this process
recursively, the system can build an incrementally larger execu-
tion suffix. As long as the start of the path contains feasible values,
the execution suffix is guaranteed to reach the error state. RES
can debug arbitrarily long programs with no runtime overhead.

Steve Hand wondered how many distinct paths were often
observed. Cristian replied that RES works well for small concur-
rent programs, and that they are able to synthesize unique suf-
fixes in about a minute. But, in general, a program that overwrites
much of its state would result in many execution suffixes.

John Wilkes asked whether logs could be leveraged. Cristian said
that logs could provide path information, which is important.
They would not provide full paths, but they would provide specific
points, which could disambiguate state.

Petros Maniatis asked about the tradeoffs of checkpointing at
runtime, and then combining forward and backward search.
Cristian replied that fast checkpointing might be something
worth using and could potentially be used to validate the feasibil-
ity of states. But his position is to do as much as possible without
recording; checkpointing is a form of recording.

Jeff Mogul asked whether the compiler could be leveraged, like
-OVERIFY, to generate log entries at specific points where reverse
stepping would be difficult. Cristian said that the compiler could
try to use less overwriting, and that they are trying to use copy-
on-write when possible.

When John Wilkes asked for project insights, Cristian replied that
the project is still in its beginnings. Execution suffixes are cur-
rently on the order of hundreds of instructions, but it depends on
the specific program and how much rewriting it does. He noted
that without debugging symbols, a control flow graph is necessary
in order to determine possible paths.

Open Mike
George Candea wanted to know how comfortable people were
with putting specialized code in programs solely for post-mortem
analysis. He was curious about the range of measures with which
people were comfortable. Matt Welsh wanted clarification as to
whether George was asking about developers, libraries, or run-
times. George responded that that was the point of his question.
He thought some people might be uncomfortable with a 5% over-
head, but Matt thought that 5% was absolutely fine because the
information gained was invaluable. John Wilkes noted that moni-
toring systems generate several percent overhead, so overheads
under one percent are well within the acceptable threshold. Jeff
Mogul said that what is unacceptable is logging information that
causes privacy concerns.

Matt Welsh asserted that reviewers should make sure to avoid
punishing papers when the overheads are over these thresholds.
Also pointed out is that just because a technique is not acceptable
for production, it is still worth reading. Mike Freedman com-
mented that it is also important for authors to be careful about
how they calculate overheads. Erez Zadok reiterated that accept-
able costs are dependent on the application. NASA’s Jet Propul-
sion Labs might be willing to accept overheads of 20–30% for a
Mars rover, so the community shouldn’t set simple thresholds.
John Wilkes added that thinking about the cost to fix bugs is also
important. There should be more flexibility than just one magic
number. What we would like is a range of things and different
choices. Overheads accumulate, so thinking about priorities and
making sure that important features are the ones that are ulti-
mately incorporated is important; what might be acceptable on a
server might not be acceptable on a phone.

Petros Maniatis asked about the role of hardware. He noted that
Intel provides branch information such as last branch records
(LBR), but that in terms of performance, these things are not free.
Intel must prioritize things, too, so if the software community
would come to a consensus, then hardware designers could make
these decisions.

A general comment was that the session’s debugging papers
assumed a C-code environment, but there also is interest in man-
aged language runtimes. A lot of production code is written in lan-
guages such as Java and C#, and this might be an easy place to add
diagnostics. An open question was how general can these tools be
made.

E L E C T R O N I C S U P P L E M E N T

 | OCTOBER 2013 | VOL. 38, NO. 5 | HotoS XIV | WWW.usENix.ORg PAgE 12

Something Old, Something New, Something Hot
Summarized by Cristian Zamfir (cristian.zamfir@epfl.ch)
Operating System Support for Augmented Reality Applications
Loris D’Antoni, University of Pennsylvania; Alan Dunn and Suman Jana,
University of Texas at Austin; Tadayoshi Kohno, University of Washington;
Benjamin Livshits, David Molnar, Alexander Moshchuk, and Eyal Ofek,
Microsoft Research; Franziska Roesner, University of Washington; Scott
Saponas, Margus Veanes, and Helen J. Wang, Microsoft Research

David Molnar explained that augmented reality (AR) applica-
tions impose new challenges on operating systems for several
reasons. First, AR applications must deal with potentially sensi-
tive data that gets mixed with user input, which calls for a more
fine-grained permission system. David showed how the raw video
input stream may contain user faces and private information, yet
any application can access this information, so this will not work
with AR applications that multiplex access to the same video
stream. Second, the window system will have to be updated in
order to handle 3D objects from multiple applications, as opposed
to the square windows we have today. Third, AR systems have to
deal with continuous inputs (e.g., gestures) that are also inherently
noisy (e.g., an object may be confused with an arm).

David pointed out that given the emergence of such systems, these
challenges (especially the privacy-related ones) will have to be
solved before the legislation is updated in probably 2–3 years.
Other wise, without some privacy guarantees, AR systems may
even be officially banned from certain contexts.

Michael Freedman (Princeton) asked what lessons from Web
mash-ups can be applied in this area. David mentioned that the
work on clickjacking defense can be used. Another issue is the
Same Origin Policy, which does not yet exist in AR systems, but
there is room to innovate in this area.

Steve Muir (VMware) asked if the OS should manage the access
to private data. David argued positively, and briefly described his
upcoming paper in USENIX Security on how to provide visual
explanations to users of what the requested permissions allow
applications to access. Stefan Bucur (EPFL) asked whether infor-
mation flow control could help. David agreed that is a good direc-
tion for exploration. Peter Druschel (MPI) asked whether there
will be a “one size fits all” set of abstractions for the AR applica-
tions. David said that the answer is likely yes, since this model
will be easier to use by developers.

Solving the Straggler Problem with Bounded Staleness
James Cipar, Qirong Ho, Jin Kyu Kim, Seunghak Lee, Gregory R. Ganger, and
Garth Gibson, Carnegie Mellon University; Kimberly Keeton, HP Labs; Eric
Xing, Carnegie Mellon University

James Cipar introduced Stale Synchronous Parallelism, a model
that maps to scientific applications and can tolerate stragglers.
The key idea is that this model allows applications to tolerate sig-
nificant delays in some threads. Preliminary results with an early
prototype show that increased staleness can mask the effects of
occasional delays. The model also detects when data becomes too

unsynchronized, and synchronizes threads to avoid unbounded
staleness. An important open question for ongoing work is how to
automatically tune the requirements of the application regarding
freshness.

Doug Terry (MSR) asked whether the staleness bound impacts
convergence and James answered that, in their experience, it is
important. Mike Schroeder (MSR) asked whether their method
works with non-transient delays. James answered that their
approach supports temporary delays, like a GC pause or some
additional computation done by a specific thread, but it cannot
do anything against non-transient delays. Roxana Geambasu
(Columbia) asked what other kind of applications this model
accommodates. James said they have experience with scientific
computing applications, page rank, and machine-learning algo-
rithms that resemble gradient descent. Jonas Wagner (EPFL)
asked why performance improves when there are no delays.
James answered the staleness model masks some delays. David
Ackley (UNM) pointed the authors to related work that uses a
similar technique to tolerate transient errors. This technique
works for errors, but might apply also to delayed computation.

Lightweight Snapshots and System-Level Backtracking
Edouard Bugnion, Vitaly Chipounov, and George Candea, Ecole Polytechnique
Fédérale de Lausanne (EPFL)

Edouard Bugnion introduced the concept of lightweight snap-
shots, a new state abstraction that provides immutable snapshots
integrated into the virtual memory subsystem. Based on the light-
weight snapshots abstraction, he proposed a design for an operat-
ing system that provides system-level backtracking for arbitrary
applications. The design of the backtracking OS leverages modern
x86 hardware-virtualization support to perform efficient back-
tracking and supports configurable scheduling policies.

Edouard gave several examples of applications that can benefit
from the backtracking OS (e.g., S2E, a demanding application
that implements full-system symbolic execution, and Z3, an SMT
solver). He also exemplified the system-level backtracking API
using the canonical n-queens example. Their early prototype can
already provide backtracking capabilities to complex applications
such as Z3, with minimal changes to the application.

David Molnar (MSR) asked whether developers can pass the
scheduling heuristic to the OS. Edouard answered this is indeed
possible. Andrew Bauman (MSR) asked whether it would be bet-
ter to move the scheduler outside the OS. Edouard answered that
the scheduling policy and the scheduler are decoupled: the sched-
uler can be in the OS, and the scheduling policy can be set by the
application. Edward Yang (Stanford) asked whether the proposed
abstraction can be thought of as a faster fork(). Edouard answered
that it is more than that, since it is hard to just use fork() and com-
bine it with various search heuristics. Brad Karp (UCL) asked
whether privilege separation (as in Wedge, a system built at UCL)

E L E C T R O N I C S U P P L E M E N T

 | OCTOBER 2013 | VOL. 38, NO. 5 | HotoS XIV | WWW.usENix.ORg PAgE 13

is another application of the proposed system. Privilege separa-
tion requires strong isolation, but can this be added? Edouard
answered that Wedge was eventually built into Dune. The big
takeaway is that one can now envision building domain-specific
operating systems.

HAT, Not CAP: Towards Highly Available Transactions
Peter Bailis, University of California, Berkeley; Alan Fekete, University of
Sydney; Ali Ghodsi, University of California, Berkeley and KTH/Royal Institute
of Technology; Joseph M. Hellerstein and Ion Stoica, University of California,
Berkeley

Peter Bailis proposed highly available transactions (HATs) that
are available in the presence of network partitions. The CAP theo-
rem shows that it is impossible to provide linearizability in the
presence of arbitrary network partitions, and does not directly
apply to database transactions. Peter pointed out that even single-
node databases do not provide serializability by default, because
it is expensive. Instead, they provide weaker consistency models,
and many applications work well with these models and can toler-
ate the arising anomalies to gain performance. However, it is not
clear which models can be achieved with high availability.

Their work is about exploring the class of high availability low-
latency transactions that can be achieved in the presence of
network partitions. Peter proposed techniques based on read or
write buffering to provide some guarantees (read committed and
repeatable read isolation) for a HAT system, and also described
some additional guarantees that they proved are not achievable
(e.g., regency bounds and some integrity guarantees).

Brad Karp (UCL) noted that previous papers about Spanner and
Eiger mentioned similar social networking examples (e.g., the
order of the posts). Brad asked what HAT can provide compared
to this other work. Peter answered that there are many exist-
ing applications that work with the weak consistency offered by
today’s databases, so this is a useful programming model. More-
over, the anomalies that would appear under these models do not
appear for some applications. For instance, TPCC isn’t subject to
anomalies from weak consistency, which is why Oracle is TPCC-
compliant and offers a weak consistency model. Doug Terry
(MSR) argued that one way to implement repeatable reads is to
just not allow any transactions to commit when you have a parti-
tion. Peter said that with transactions you can have success and
abort, so one can abort everything and obtain the liveness prop-
erty. Their paper contains details on how they define transaction
availability. Michael Freedman (Princeton) asked whether the
write buffering technique is two-phase commit. Peter answered
no and explained the differences.

Open Mike
Byung-Gon Chun (Microsoft) asked how the bounded stale-
ness model compares to the asynchronous lazy synchronization
model used in GraphLab. James answered that GraphLab makes
assumptions about data locality and would also require modi-

fications to their algorithms to accommodate staleness. Petros
Maniatis (Intel) asked whether their work is about figuring out
how much staleness can be supported by the applications. James
answered that they established a profile of the applications that
work, and identified several applications that fit the profile. Steve
Hand (Cambridge) suggested that if one speculates, then one may
also need to roll back, so they could use lightweight snapshots pro-
posed in the talk by Edouard Bugnion.

Jacob Lorch (MSR) asked how to evaluate which of the consis-
tency models discussed in the HAT not CAP talk is reasonable and
can be understood by users. Peter Bailis (Berkeley) argued that it
is still an open question what consistency models to run on and
not violate the application’s integrity constraints. Peter argued
this is a great direction that should see more work and exemplified
with work from Marc Shapiro at INRIA on conflict-free replicated
data types. Siddhartha Sen (Princeton) proposed comparing the
code that one would have to write to deal with weaker vs stronger
consistency. Ali Ghodsi (Berkeley) commented that Doug Terry’s
session consistency model already prevents several anomalies
that users see, so the big open question is what is the consistency
model that is both efficient and prevents most of these anomalies.

Hardware to the Rescue
Summarized by Cristian Zamfir (cristian.zamfir@epfl.ch)

The von Neumann Architecture Is Due for Retirement
Aleksander Budzynowski and Gernot Heiser, NICTA and University of New
South Wales

Gernot Heiser’s talk was motivated by the plateau reached by CPU
frequency and the multicore trend; he proposed a self-modifying
data flow graph computation model to replace the von Neumann
model. Their model essentially does away with global memory,
thus aiming at making it possible to express and implement gen-
eral purpose parallel computations easier and more efficiently.

A typical data flow computing model is static, and there is no way
to express dynamic algorithms and data structures. To address
this challenge, they propose a data flow graph that can change
itself, change references to other nodes in their immediate neigh-
borhood, create new nodes, etc. They have a partial implemen-
tation that takes Haskell code as input and translates it into
data-flow assembly.

Ariel Rabkin (Princeton) wondered how synchronization is imple-
mented and asked to see how the proposed design works for some-
thing simple like matrix multiplication. Gernot answered that
synchronization is entirely done by data flow. He also mentioned
that the example he described in the talk is more complex than
a matrix multiplication and would work for dynamic data struc-
tures. Mike Schroeder (MSR) asked about the next step; where do
they plan to get the hardware to implement this? Gernot said they
can try to simulate this architecture in software without the per-
formance benefits. Moreover, their work is inspired by a startup
that aims to build fully asynchronous hardware.

E L E C T R O N I C S U P P L E M E N T

 | OCTOBER 2013 | VOL. 38, NO. 5 | HotoS XIV | WWW.usENix.ORg PAgE 14

David Ackley (UNM) said that the answer to all the open ques-
tions raised by the talk is coming up with a spatial layout of the
graph, which has to be embedded in the hardware, which has to
be spatially extended, yet still be finite. Gernot answered that
there is commonality between their hardware and the hardware
proposed by David at the previous HotOS. They are trying to get
away from the global address space yet retain as much of the CS
abstractions as possible, thus making the model more easy to pro-
gram than David’s model.

Brad Karp (UCL) asked whether before proposing such a change
at the hardware level, one does not have to refute the arguments
made by people working on taking a sequential programming
model and making it work for multicores. Gernot argued that
everyone is trying to tweak the von Neumann model, but these
approaches will run out of steam after some scale. He argued that
his system has some nice properties that are worth exploring.

Arrakis: A Case for the End of the Empire
Simon Peter and Thomas Anderson, University of Washington

Simon Peter argued that recent hardware devices enable build-
ing kernels that allow applications to talk to hardware directly,
without OS mediation; the kernel only provides control plane
services (e.g., deals with resource reallocation), but applications
use a library linked in their address space to talk to hardware
directly. One enabler for this design is the fact that hardware is
increasingly virtualized. Moreover, I/O devices become faster
while CPUs are bottlenecked by frequency, so unmediated
access to hardware devices is an important performance-related
 requirement.

One of Arrakis’ several goals is to allow applications to customize
OS functionality (e.g., provide protection domains using hardware
protection). Moreover, Arrakis is designed to provide device driver
safety, by running device driver replicas and ensuring that when
one replica crashes, the system does not crash. One important
challenge is dealing with the fact that hardware may not provide
sufficient virtualization capabilities for meeting all the proposed
design goals.

Jeff Mogul (Google) said Arrakis looks like it is partially reinvent-
ing the InfiniBand model (which has had this separation for a
decade). Simon answered they are trying to generalize that model
to other hardware. Steve Muir (VMware) argued that Arrakis
needs to support migration and checkpointing to be useful for
real-world use cases and Peter agreed. Edouard Bugnion (EPFL)
asked what can be learned from the way people build the control/
data plane separation in network hardware. Simon answered this
was part of their inspiration and that they are already looking at
that literature.

Rethinking Network Stack Design with Memory Snapshots
Michael Chan, Heiner Litz, and David R. Cheriton, Stanford University

Michael Chan proposed a redesign of the network stack, which
leverages HICAMP (ASPLOS ‘12), a hardware memory system
that supports snapshot isolation. The system allows zero-copy,
reduces memory allocations, and works with the existing socket
API. The main motivation for this work is that the networking
stack uses many memory allocations and accesses, while network
I/O speeds are going up. Unlike existing approaches, users do not
have to use specific data structures to do zero-copy; instead they
can use the application data. Compatibility with the POSIX API
is done by simply passing another flag to the malloc() call to use
HICAMP memory.

Michael showed how to do zero-copy I/O and how to simplify the
DMA process and the NIC design. He also discussed the space
and time tradeoff of the design. He ended the talk by arguing that
software-hardware co-design can improve OS architecture and
solicited ideas for applications to other areas of system design.

Siddhartha Sen (Princeton) pointed out that persistent data struc-
tures (some developed by Targent) can be used to efficiently keep
multiple copies of a data structure and be able to update it par-
tially. Jacob Lorch (MSR) asked when the hardware will be avail-
able. Michael mentioned they have a simulator and plan to make it
available to others soon.

Rik Farrow (USENIX) mentioned that their system ends up doing
pointer chasing, which imposes some overhead. Michael said
there are two additional reads/write when writing duplicate data.
Michael mentioned some back-of-the-envelope calculations for
network I/O that seem very optimistic (several hundred Gbps), so
even achieving 50% of that would be impressive.

Edouard Bugnion asked about the downside when integrating
with the cache hierarchy. Michael answered that L3 will take care
of most of the caching for their data structures, but in L1 and L2
would only contain immutable data, so there is no need to main-
tain cache coherency. He envisioned a selector that can be config-
ured to tell the CPU whether the range needs to be handled by the
HICAMP controller or the CPU.

Open Mike
Steve Muir (VMware) asked if the approaches discussed can be
partially implemented (e.g., implement memory snapshots for just
for a part of the memory). Gernot Heiser argued against sacrific-
ing the purity of the model, otherwise the model will never take
off. Michael argued that you can use HICAMP as an accelera-
tor, not a replacement for paged virtual memory, so they advocate
a hybrid model. Simon Peter argued that for Arrakis they do not
advocate a hybrid model, but one could retrofit Arrakis onto KVM,
for instance.

E L E C T R O N I C S U P P L E M E N T

 | OCTOBER 2013 | VOL. 38, NO. 5 | HotoS XIV | WWW.usENix.ORg PAgE 15

Jonas Wagner (EPFL) commented that the discussed hardware
models seem to map very well for some workloads, but not for all,
and asked whether there are systems with little workload diver-
sity for which these systems would work well. Several attend-
ees gave examples of systems that run dedicated workloads (e.g.,
OLTP) that could benefit from the proposed hardware changes
(e.g., snapshots). Jonas also gave an example for functional lan-
guages that could implement reference counting more efficiently
in hardware. Gernot agreed that functional languages map very
well to a data flow model. Simon also argued that garbage collec-
tion also maps very well. Jacob Lorch and Eduard Bugnion sug-
gested that hardware-software co-design is a fascinating area
for innovation, but we should not rely only on hardware people to
design hardware, otherwise the hardware is hard to exploit. Some
examples are hardware that can help do efficient garbage collec-
tion and hardware that can efficiently demultiplex. Simon said
an open question is what happens if the hardware is not flexible
enough at demultiplexing: can a software solution be found?

David Molnar (MSR) pointed out a new piece of hardware that
looks interesting: tritium batteries that do not require charging.
An open question is how to re-architect the OS assuming such
new hardware.

Unconference Results
Summarized by Rik Farrow (rik@usenix.org)

Hardware’s Role in System Design
Michael Chan presented the summary of what I thought of as
Petro Maniatis’ session about the future of CPU and system
designs. He pointed out that Intel is swayed by what it expects
its biggest customers will want in the future, and what systems
researchers want. Software writers want better performance, but
also better views of the internal metrics collected by processors.
Power consumption is one of Intel’s biggest focuses right now, but
there are also issues of hardware and software mismatch. For
example, Barrelfish relies on cache coherency for inter-core com-
munication, but this works poorly for data structures (or anything
larger than six cache lines). Finally, software folks struggle to
imagine what will come out of the Intel CPU pipeline five years
down the road, the current timeframe for integrating changes in
CPUs, and secret by design.

Networking CPU Cores
Jeff Mogul presented a summary of John Ousterhout’s unconfer-
ence session, which was focused on John’s desire for a high-speed
network that would connect CPU cores and their level 1 caches
together with very low latency. The conclusion was that switch
designers have already worked on a very similar issue, exchanging
packets of data across a switch fabric with very low latency, and
that John should talk with the people familiar with these designs.
Jeff pointed out that John doesn’t want queues, but Jeff said that
there must be queues.

Augmented Reality and Mobile Sensors
David Molnar (Microsoft) first thanked Franzi Roesner (U Wash-
ington) for helping lead this session. Then he explained what is
different in new settings, such as Google Glass and more immer-
sive augmented reality (AR) displays: the input and the output.
The input is noisy, sounds and video, and much of it should be pri-
vate. The output must be controlled, so that malicious apps don’t
overlay reality with their own version—for example, rewriting a
sign. The OS must create a permissions experience and abstrac-
tions to control what applications can access which data. We no
longer have 2D windows, but 3D volumes. AR makes several exist-
ing problems much worse.

There are issues of privacy as well, such as bystander privacy, or
places that want a complete ban on video recording, like a gym or
a bar in Seattle. There are also man-in-the-middle concerns, such
as a government that seeks to collect data on its citizens. David
suggested having primacy of the physical space—for example,
allowing the owner of a space to zap a camera using an infra-
red laser. He concluded by saying that there is about a two-year
window to deal with this before legislatures start mangling these
issues.

Programming Language Approaches to Systems
Edward Yang (Stanford) began by pointing out that programming
language and software can be codesigned, and you can even build
a language just for yourself. They discussed composition and mod-
ularity, the ability to have many languages that can work together.
They want incrementalism, which means backward compatibility
and no flag days, but also the ability to exclude what doesn’t work
well. Ed mentioned the difficulty in measuring programmer pro-
ductivity, and concluded by saying that program languages people
should be hired, as they often bring useful insights into projects.

Security
The security unconference group was one of the largest, but the
ground covered seemed all-too familiar to me. Deian Stefan (Stan-
ford) presented the summary. The group began by considering a
trust model for code integrity, then pondered allowing untrusted
code to modify or copy data. They posited that they know how to
isolate untrusted code, and that the interesting question is how
to share data between sandboxes. They next considered machine
learning for security, and whether authentication (actually autho-
rization) should be considered on a scale.

They also considered the role of firewalls in security today, con-
cluding that firewalls provide insufficient protection and that
getting them to provide better protection would require a huge
amount of user interaction. Plus, firewalls do not protect against
internal attackers. They ignored the issue that the attacker who
has established a beachhead through the typical spearphishing
attack is essentially an insider. This negates having a firewall in
almost all of the attacks on organizations seen today.

E L E C T R O N I C S U P P L E M E N T

 | OCTOBER 2013 | VOL. 38, NO. 5 | HotoS XIV | WWW.usENix.ORg PAgE 16

They finished their session by discussing the role of the user in
making security decisions, asking whether they can educate non-
power users about security. Restructuring designs that avoid
requiring the user to make any security decisions was the final
point (and a very good one). My apologies for the editorial com-
ments, and while I only witnessed the end of the discussion, I
found myself disturbed by hearing old ground covered while sum-
marizing the notes for the entire session.

Big OLTP: Oxymoron or Impending Crises
Using a graphical reference to Oracle, Peter Bailis (UC Berkeley)
began the summary for this session with a question: when will
the current tech we use break? Peter said that OLTP follows two
common patterns: low mutation rate with many queries, or lots
of mutation but few queries. And with devices like Google Glass,
there will be both high mutation and lots of queries. Closed-world
assumptions about databases will no longer hold, with the source
of truth being external to the stream processor. They expect to see
OLTP combined with OLAP (analytics), and the challenge will
remain providing isolation between queries (ACID).

Big Data Analytics
Byung-Gon Chun presented 13 slides, the most thorough and
the longest summary. He began with six slides where the group
attempted to define big data, and presented a nice sound bite: the
three Vs of Volume, Velocity, and Variety. While volume is clear
enough when speaking of big data, and velocity obviously refers
to the ability to process that data swiftly, variety means that data
may be unstructured.

The group came up with eight areas of interest. The first was low
latency, i.e., the ability to work interactively, to recognize signifi-
cant events in data, and to remain efficient as the volume of data
grows. Second was data management, which refers to the issues
of data labeling, data format (e.g., HDF5), standardization, prov-
enance, and new data structures. Unified execution is a simple
concept: being able to process data on a single box or a scaled-up
cluster using the same program. The fourth issue, related to uni-
fied execution, is unified programming. Spark and Hive were pre-
sented as examples. Workflow management was the fifth issue,
the ability to schedule and coordinate a set of related jobs, along
with tools for doing this.

Their sixth issue was resource management, which implies
at least prioritization or constraints that control how many
resources a job can use. While an economic approach was sug-
gested, it was also pointed out that Cosmos, a chargeback scheme,
is not working. The seventh issue was accuracy, in the sense that
sometimes approximate answers, requiring less processing, are
acceptable, and there needs to be the ability to adjust the desired
accuracy. The final point was configuration complexity, with
Hadoop being used as a bad example, having tens of configura-

tion parameters. What is needed is auto-tuning knobs, where the
knobs set desired goals instead of tweaking specific parameters.

Elastic OS
Amit Gupta, who presented a paper about elasticity in operating
systems, convened this unconference session to further explore
the issue. The participants wondered whether an ElasticOS for
generic processes is too broad a goal, but perhaps certain applica-
tions, or even threads, would be suitable for elasticizing. Elasti-
cizing may occur for different reasons, even shrinking a process
when resource costs go up and expanding when costs go down, and
the process could use more resources. In the end, the group con-
cluded that they still need to be convinced.

Verification
Ariel Rabkin (Princeton) organized this session, wrote a sum-
mary, but left before he could present it. On his slides, he had writ-
ten that they now believe that increasingly large artifacts can be
verified if the artifact was designed with verifications in mind.
Formalization of code design is possible, probably usable, but is
only cost-effective for safety-critical code, and not usable yet for
Web companies.

