
O C T O B E R 2 0 1 3   v o l . 3 8 , N o . 5
E L E C T R O N I C S U P P L E M E N T

 | OCTOBER 2013 | VOL. 38, No. 5 | HotStorage ’13 | WWW.usenix.org	 PAGE 1

HotStorage ’13: 5th USENIX Workshop on Hot
Topics in File and Storage Technologies
San Jose, CA
June 27-28, 2013

Filesystems Everywhere
Summarized by Lanyue Lu (ll@cs.wisc.edu)

Fault Isolation and Quick Recovery in Isolation File
Systems
Lanyue Lu, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau,
University of Wisconsin—Madison

Lanyue Lu presented isolation file systems, providing fault isola-
tion and quick recovery within a single file system. Because file
systems are important data access interfaces in many environ-
ments, high availability is critical; however, a single fault can
trigger a large-scale impact for the whole file system, such as
remounting as read-only and a system crash. Lanyue explained
how a metadata corruption of a virtual machine disk image can
affect multiple virtual machines that share the same hypervisor
file system. Lanyue argued that modern file systems do not pro-
vide fine-grained fault isolation, thus all the files within a file
system share a single fault domain.

A study of global failures for three modern file systems (ext3,
ext4, and Btrfs) showed that remounting as read-only and crash
are common in file systems; all these global failures are caused by
metadata and systems states. Lanyue presented a new abstrac-
tion, the file pod, to represent an independent fault domain for a
group of files and their related metadata. Based on this abstrac-
tion, a file system is broken into multiple file pods with their own
failure policies. Faulty pods will not affect healthy pods; thus,
global failures can be converted to local failures. Failure recovery
is speeded up since only faulty pods need to be checked instead
of the whole file system. A prototype of the isolation file system
on ext3 was also described in aspects of file system layout, data
structures, allocation algorithms, and journaling mechanisms.

When asked about how parallel commits are coordinated in isola-
tion file systems, Lanyue responded that each commit thread is
only responsible for its own pod, and no coordinators are needed.
Ajay Gulati (VMware) asked about the difference between a file
pod and a partition. Lanyue replied that a partition is not disk-
space efficient; second, there is lots of overhead to manage mul-
tiple partitions; finally, a single file system on a partition can
crash the operating system, which will affect all partitions. Binny
Gill (Nutanix) asked whether pod-related structures will cause
global failures. Lanyue responded that pod structures are only
local, and there is no sharing or dependency across multiple pods.
If any failure is related to a pod structure, it will only affect itself.
Haryadi Gunawi (University of Chicago) asked why not improve

current file system recovery code to avoid these global failures.
Lanyue responded that modern file systems handle failures in
an ad hoc manner. Recovering from a transaction failure in the
journaling layer is hard because it requires tracking many related
states in various places. Instead, isolation file systems do this in a
systematic way by isolating the whole I/O path from a system call
to the journaling layer; thus, any low-level failure can be isolated,
related, and recovered in a cleaner way.

*-Box: Towards Reliability and Consistency in Dropbox-like
File Synchronization Services
Yupu Zhang, Chris Dragga, Andrea Arpaci-Dusseau, and Remzi Arpaci-Dusseau,
University of Wisconsin—Madison

Cloud file synchronization services such as Dropbox are popular
nowadays. Although users enjoy the benefits of automatic file
updates and recovery on multiple devices, data corruption and
inconsistent data from local file systems may also propagate to
the cloud; thus, all copies of the data will be polluted. Yupu Zhang
argued that the main reason why this can happen is a lack of coor-
dination between the local file system and the file synchronization
service. With *-Box, Yupu presented several techniques to integrate
these two components for better data reliability and consistency.

A series of fault injection experiments were conducted to show
that corrupted data gets propagated to the server when the Drop-
box client detects changes in the file content or its modification
time. This is because the Dropbox client cannot differentiate legit-
imate changes from corruption. Yupu proposed a possible solu-
tion in which data checksumming is applied in local file systems
to detect potential data corruption. The local file systems are then
able to recover from any detected corruption by using the redun-
dant copies in the cloud. Additionally, crash consistency is also
critical for both local file systems and cloud file services; however,
if local file systems do not handle crash recovery correctly, Drop-
box can synchronize inconsistent data on disk to the cloud after a
crash. In some cases, Dropbox even fails to synchronize consistent
data on disk. Yupu proposed a way to make Dropbox synchronize
files from an in-memory snapshot of local file systems. With this
technique, data in the cloud is always consistent with data on disk,
so file systems and Dropbox clients can perform correct recovery
after a system crash.

Nitin Agrawal (NEC Labs America) asked why should the sync
service care about local file system dumping garbage data? Yupu
responded that it would be great if local file systems could han-
dle corruption. But because Dropbox files may be inconsistent
upon a crash, extra care is required to make files in the cloud
actually match the files on disk. When asked about an alterna-
tive to using a thin client file system provided by Dropbox or
other sync service, Yupu responded that if the sync services used

Conference Reports

E L E C T R O N I C S U P P L E M E N T

 | OCTOBER 2013 | VOL. 38, No. 5 | HotStorage ’13 | WWW.usenix.org	 PAGE 2

a user-level file system, it would definitely affect performance.
Otherwise, loading an extra kernel module would be required.
Binny Gill (Nutanix) asked about using checksums provided in
some hard disks. Yupu replied that most users of Dropbox still
use commodity hard drives.

Mobile Data Sync in a Blink
Nitin Agrawal, Akshat Aranya, and Cristian Ungureanu, NEC Labs America

Nitin Agrawal presented Simba, a datacentric platform for devel-
opers to build and deploy mobile services with little effort. Mod-
ern mobile applications rely on both local storage and remote
cloud services for data store and access. Under this datacen-
tric model, developers must handle the data synchronization,
network connections, and resource usage explicitly. Moreover,
developers have to manage structured and unstructured data
with two different models (tables and objects), and carefully
handle the dependency between them. Without opportunis-
tic data coalescing and compression, applications built on this
model may not use network resources efficiently.

Simba provides a unified table and object API for mobile appli-
cations. This API supports simultaneous updates of object data
and associated table data; thus, it provides a single namespace
for all data. The Simba Client Data Store is responsible for stor-
ing both tables and objects; it splits objects into smaller chunks
and detects sub-object changes for fine-grained synchroniza-
tion. The minimum unit of atomic synchronization in Simba is
a single row of a table, which is a stronger guarantee than other
existing alternatives. Applications may also specify different
sync policies for different requirements. The Network Manager
in Simba handles network connectivity transparently and con-
sumes network resources in a frugal manner. With the help of
Simba, mobile applications will be greatly simplified.

When asked about the performance and reliability of the single
process of Simba, Nitin responded that they did not observe much
overhead for tables; but for large objects and frequent updates,
there will be some penalty. Someone asked why not just export
the Simba API. Nitin replied that running Simba as a service can
exploit the optimization across multiple apps on the same device,
such as consolidation of data transfer, better compression, and
even sharing a single TCP connection. Binny Gill (Nutanix) asked
about the difference between Simba and iCloud/Dropbox services.
Nitin responded that Simba was not developed for mobile apps
only. Instead, Simba provides a unified data model for both table
and objects, and it also exploits benefits across multiple apps.

Everything About NAND
Summarized by Ilari Shafer (ishafer@cs.cmu.edu)

Improving NAND Endurance by Dynamic Program and
Erase Scaling
Jaeyong Jeong, Sangwook Shane Hahn, Sungjin Lee, and Jihong Kim, Seoul
National University

Jaeyong Jeong opened the talk with the observation that, although
NAND flash capacity doubles every two years, and its cost-per-
bit is continually decreasing, device lifetime is not keeping pace.
Lifetime was defined as the quotient of total number of writes the
device can sustain and the amount of data written to it. Whereas
traditional approaches look at reducing the amount of data writ-
ten, the authors examine device physics and instead focus on
increasing endurance.

The gist of the damage model was that the program/erase cycle for
NAND requires increased voltage applied to the device that causes
more rapid breakdown, particularly during the much longer erase
cycle. The goal of the proposed scheme is therefore to reduce the
erase voltage. This cannot be done independently, though. The
erase voltage is proportional to the width of the threshold voltage
distributions used when programming, and shrinking the width of
these distributions entails increasing the time used for program-
ming as more voltage increments are required.

This tradeoff between programming time and damage is the
basis for DPES (dynamic program and erase scaling), the tech-
nique developed by Jaeyong’s group. DPES separates flash blocks
into different modes: ones that allow a short programming time
but require high erase voltage and high damage, and ones with
progressively longer programming time that cause less damage.
Exposing this tradeoff to the flash translation layer gives it the
opportunity to reduce wear when write throughput requirements
are lower. Jaeyong then presented an evaluation of such an FTL,
autoFTL, which uses utilization of the write buffer as a proxy for
throughput requirements. The FlashBench-based evaluation on
four I/O traces and two NAND environments (mobile and enter-
prise) demonstrated an average of 45% improvement in endurance
with negligible impact on write throughput.

After the talk, Hangyoung Chun (UT Dallas) asked what would
happen if a power failure or breakdown occurred during the now-
longer programming step; Jaeyong replied that failure questions
are not within the scope of this work. Nitin Agarwal (NEC Labs)
inquired about the trace characteristics: the factor of 1,000 dif-
ference in buffer size between mobile and enterprise environ-
ments was an assumption, and one of the four traces (“mobile’’)
was a mobile torrent trace. Steven Swanson (UCSD) asked how
the programming voltage was varied for the NAND characteriza-
tion. Jaeyong explained it can be done with an internal test mode
for the device.

E L E C T R O N I C S U P P L E M E N T

 | OCTOBER 2013 | VOL. 38, No. 5 | HotStorage ’13 | WWW.usenix.org	 PAGE 3

Dynamic Interval Polling and Pipelined Post I/O Processing
for Low-Latency Storage Class Memory
Dong In Shin, Taejin Infotech; Young Jin Yu and Hyeong S. Kim, Seoul National
University; Jae Woo Choi and Do Yung Jung, Taejin Infotech; Heon Y. Yeom,
Seoul National University

Dong In Shin began with some background: his company, Taejin
Infotech, builds memory-based storage servers and is integrat-
ing system firmware and software design. To that end, the talk
focused on optimizing the performance of storage class memory
by modifying the I/O path to achieve lower latency, complement-
ing the group’s previous work on improving throughput by merg-
ing I/Os within a short time window.

The first solution for latency reduction targeted polling overhead.
Although polling is lower-overhead than using interrupts, a too-
long poll interval increases response time, and (as substantiated
by an experiment) too short an interval can impose a burden on
the storage channel. Instead, Dong introduced dynamic inter-
val polling, which adjusts the polling interval based on measured
device response time (exactness, Dong explained, is not critical).

And although their previous work improved throughput through
I/O batching design, it came at a cost of latency when memory
operations that needed to happen after an I/O were delayed until
the entire batch completed. To mitigate this problem, Dong’s group
proposed a new interface—a page-level completion acknowledg-
ment message that would be sent from the controller.

Dong presented an evaluation of the two proposed solutions using
a DRAM device modified to have higher latency to emulate PCM.
Under four microbenchmark I/O patterns, performance was high
for read benchmarks, and performance of an OLTP-style macroben-
chmark also increased, particularly for more parallel workloads.

Peter Desnoyers (Northeastern University) proposed DMAing
the status of the device into memory to avoid polling. An attendee
from Fujitsu asked which solution had more effect; Dong replied
there was no analysis to separate the two. The next questioner
suggested dynamically changing the speculative latency for poll-
ing, given that there is latency variation at the device level. Dong
replied this could be done in future work on a FPGA board with
real PCM, and there is a plan to do so. Lastly, Michael Condict
(NetApp) wondered why PCM was not simply placed on the mem-
ory bus. Dong replied it was an eventual goal but that it is difficult
to make a memory controller for PCM.

What Systems Researchers Need to Know About NAND Flash
Peter Desnoyers, Northeastern University

Peter Desnoyers’ talk began by underscoring the need to cover
some common misconceptions about NAND flash, referencing
the popular “why most published research findings are false” and
observing that it is easy to make mistakes about a piece of hard-
ware that is designed somewhat nonintuitively.

First was the fact that NAND flash no longer comes in just two page
sizes: there are now 4 KB, 8 KB, and 16 KB page sizes to increase
programming throughput, and 64, 128, 192, 256, and perhaps even
512-page erase blocks to amortize per-erase- block overhead. Flash
pages are also not uniform, and come in “fast” and “slow” flavors
due to the way MLC flash is read and some MLC devices that treat
half the pages as SLC. The final observation from the hardware side
was that flash devices don’t “just break.” Instead, there is a gradual
degradation process as cells hold their value with less fidelity, a
decline exacerbated by program/erase cycles.

Peter then described some characteristics of flash and SSD con-
trollers. Modern devices actually have a fairly substantial amount
of onboard DRAM, and have much more internal parallelism than,
say, a traditional RAID array. Among other implications, this
means that while large reads can be striped across multiple chan-
nels, page-sized reads will only go to one channel and be limited to
the throughput of a single chip.

Peter explored the common wisdom that flash is poor for random
writes, and showed that this may not be the case if writes are kept
within a small region. An experiment showed that when writes
were kept within 1/32 of the addressable space, throughput only
degraded by about a factor of two (whereas writing over the entire
LBA space resulted in poor performance). In addition to the
importance of this finding in evaluations, it implied that applica-
tions and file systems should maximize locality—for example, by
keeping a free block stack instead of a queue.

There was no time for online questions afterwards.

RAID Parade
Summarized by Sangwhan Moon (sangwhan@tamu.edu)

Don’t Let RAID Raid the Lifetime of Your SSD Array
Sangwhan Moon and A. L. Narasimha Reddy, Texas A&M University

Sangwhan Moon presented his recent research on the reliability
of SSD-based RAID. He pointed out that parity protection is not
guaranteed to improve the lifetime of SSD array for two reasons:
(1) parity should be updated whenever data is updated, thus increas-
ing the total number of writes done to the SSD array; (2) parity
consumes space and this increases space utilization, which results
in more write amplification from less efficient garbage collection.
Sangwhan explained in the presentation how he estimated the life-
time of SSD arrays considering parity protection and write ampli-
fications. He showed how much parity protection (RAID5) can
improve the lifetime of an SSD array compared to striping (RAID0).

Sangwhan and his collaborator introduced Markov models to
estimate the lifetime of SSD arrays. They started modeling from a
Markov model for each page, and extended this model to cover an
SSD array considering parity protection and write amplification.
From steady state analysis of the model, they estimated the prob-
ability of data loss and the lifetime of SSD arrays.

E L E C T R O N I C S U P P L E M E N T

 | OCTOBER 2013 | VOL. 38, No. 5 | HotStorage ’13 | WWW.usenix.org	 PAGE 4

Sangwhan showed that in a single array the lifetime of parity pro-
tection (RAID5) is possibly more than that of striping (RAID0)
only when the number of SSDs is more than or equal to eight. He
showed many conditions when parity protection becomes com-
petitive to striping in terms of lifetime—for example, when space
utilization of the SSD is low, when many factors to reduce writes
are considered, and when device failure rate of the SSD is high. In
large-scale systems, however, he showed that parity protection is
more scalable than striping.

Sangwhan concluded his talk with his finding that parity protec-
tion is possibly worse than striping with a small number of SSDs
and that this deserves further study. His team has plans to do
more evaluations, to validate models, to compare monetary costs
of different versions of RAID, and to suggest a scheme to reduce
write amplifications.

After the talk, Sangwhan was asked whether there is a result com-
paring the lifetime of parity protection to the lifetime of single
SSD. He answered that, because the evaluation results are the
ratio of the lifetime of a target SSD array to the lifetime of single
SSD, the ratio shows the comparison.

A Solution to the Network Challenges of Data Recovery in
Erasure-Coded Distributed Storage Systems: A Study on
the Facebook Warehouse Cluster
K. V. Rashmi and Nihar B. Shah, University of California, Berkeley; Dikang
Gu, Hairong Kuang, and Dhruba Borthakur, Facebook; Kannan Ramchandran,
University of California, Berkeley

K. V. Rashmi gave a talk about her study on erasure coding in the
Facebook warehouse cluster (in production). Replication provides
reliability and availability in datacenters, but requires a high stor-
age overhead. For data that is accessed less frequently, the use of
erasure codes can save a significant amount of storage. Facebook
employs a (10,4) Reed Solomon (RS) code on data not accessed for
more than three months, which can protect 10 data blocks and 4
parity blocks from up to any four block failures.

As Rashmi and her collaborators observed, the RS code requires
considerably more network traffic and disk I/O for recovery as
compared to replication. This increases the burden on the network
infrastructure. As a solution, they proposed an alternative code
that is obtained by modifying the RS code by adding “piggybacks.”
The “Piggybacked-RS” code reduces the network traffic and disk
I/O for recovery, while having the same storage overhead and
fault-tolerance capability as RS codes. In the talk, she illustrated
the idea of piggybacking via a (2,2) toy example. The Piggybacked-
RS code for the (10,4) case can reduce the download and I/O from
20 to 13. They are implementing their solution in the Hadoop
distributed file system (HDFS), and plan to provide an empirical
evaluation in the future.

There were two queries regarding the measurements: the reasons
for the failures and the percentage of network traffic for recovery

over total network traffic. Rashmi said she did not have that
data. Another questioner asked her to compare the recovery gain
between recovery of one block to lazy recovery of multiple losses.
Rashmi said it can be done but is orthogonal to the proposed solu-
tion. She had showed in the presentation that 98% of recovery
operations performed were single-block failures. Two questioners
worried about CPU utilization and computation overhead of the
Piggybacked-RS code. Rashmi said that the computation over-
head, as compared to the RS code, is only in adding and subtract-
ing the piggybacks. She also said that the computation overhead
was not really an issue since the datacenter under consideration
was limited by resources such as the network bandwidth and the
disk I/O, and not by computation.

RAIDq: A Software-Friendly, Multiple-Parity RAID
Ming-Shing Chen, National Taiwan University; Bo-Yin Yang, Academia Sinica;
Chen-Mou Cheng, National Taiwan University

Bo-Yin Yang presented the design and implementation of RAIDq,
a software-friendly multiple-parity RAID. As storage systems
scale out, triple-parity RAID (RAID7) and quadruple-parity
RAID (RAID8) are demanding. RAIDq uses linear code and
it is backwards-compatible such that RAID5 and RAID6 are
special cases of RAIDq. RAIDq exploits hardware-accelerated
instructions, which are already supported by CPUs for RAID5
and RAID6. This can boost the encoding and decoding speed of
RAIDq. RAIDq has a limit on the number of protected disks. Bo-
Yin showed why and provided the numbers in the presentation.

Bo-Yin continued by showing why current RAID cannot be easily
extended to triple-parity or quadruple-parity RAID using finite
field representation. When RAID is extended beyond RAID7 over
a certain finite field, there is a condition that the RAID7 should
satisfy: to make a generator matrix invertible, three determinants
should be nonzero. The number of protected disks, for example,
cannot be more than 21 if RAID8 is over finite field F (256); other-
wise, the condition may be unsatisfied. If compatibility with exist-
ing RAID6 is disregarded, the number of disks can be up to 27.

RAIDq addresses the general case of RAID with an arbitrary
amount of checksum data up to certain limits. Bo-Yin explained
how he split a scalar multiplication to hardware-supported table
lookups and XOR operations. RAIDq7 improves its performance
by using those hardware accelerated instructions. He showed
how he split a multiplication in extended finite fields to the arith-
metic over F(256) as well. The encoding and decoding through-
put of many candidates for RAIDq 8 with different finite fields
were evaluated. RAIDq is implemented on SSSE3 (Supplemental
Streaming SIMD Extensions 3). Bo-Yin compared RAID6, RAIDq
7, and the proposed candidates for RAIDq 8 to Reed Solomon (RS)
code. The result showed that most of RAIDq have acceptable max-
imum number of protected disks, up to 92 for RAIDq 8, whereas
encoding and decoding throughputs are higher than RS code.

E L E C T R O N I C S U P P L E M E N T

 | OCTOBER 2013 | VOL. 38, No. 5 | HotStorage ’13 | WWW.usenix.org	 PAGE 5

Virtual Machine Data
Summarized by Varun Prakash (vsprakash@uh.edu)

Efficiently Storing Virtual Machine Backup
Stephen Smaldone, Grant Wallace, and Windsor Hsu, EMC Corporation

The authors had a chance to present the summary of their work on
the previous day during the poster sessions. The talk started with
an intro about the current backup scenarios and logical vs physi-
cal types of backup. With a focus on virtual machine backup, the
question being addressed in the paper is, “Can physical backup be
as efficient as logical backup?” The testbed being used for experi-
ments is a typical industrial testbed and a clear-cut methodology
to perform experiments was provided. The experiments included
a comparison of compressed and noncompressed data and the
performance effects of deduplication. The authors also included
the effects of file systems and metadata on the virtual machine
archiving process.

The results are attributed to some effects within the file system,
such as file-system churn. Some of the counterintuitive results
from the analysis provided a lot of insight and a deeper under-
standing of some of the inner workings of the system.

After a note on the related work, the authors concluded that physi-
cal backup is easier to manage and can be more space-efficient
than logical backup.

Improving I/O performance Using Virtual Disk Introspection
Vasily Tarasov and Deepak Jain, Stony Brook University; Dean Hildebrand and
Renu Tewari, IBM Research—Almaden; Geoff Kuenning, Harvey Mudd College;
Erez Zadok, Stony Brook University

The use of virtual machines can sometimes be a compromise
between performance and loss of file system-related data that do
not trickle down to the hypervisor. This serves as a motivation to
the researchers, who try to answer the question, “How can seman-
tics of the virtual machine and metadata be preserved in the file
system?” After giving a short background on some of the ways the
hypervisor and storage architectures access data, Vasily Tarasov
noted the ways in which the guest OS, mainly isolated in previous
black-box approaches, provides assistance. There are also various
levels of file system awareness of the guest OS by the lower layers,
which in many approaches has no or only incomplete information
about the guest file system.

The internal working of the introspection code is said to be based
on a process of reverse translation to find a sweet spot within the
system. Some of the areas of focus include how to perform map-
ping management, the types of optimizations that are commonly
found in the market, and the effects of tiered storage on unused-
block detection, compression, and optimization.

Some of the results obtained by the group include increased per-
formance in terms of runtime reduction. The system is said to
be efficient while performing some types of operations, such as
delete and read-intensive tasks.

Low-Cost Dedup for Virtual Machine Backup
Wei Zhang, Tao Yang, and Gautham Narayanasamy, University of California,
Santa Barbara; Hong Tang, Alibaba Inc.

The talk started with an introduction to deduplication technolo-
gies and the presentation of a low cost method of deduplication.
The motivation of the project is derived from the fact that there is
a need to continuously improve the service reliability. Some of the
solutions include looking out for inexpensive storage and architec-
ture considerations. In this regard, a note on some of the require-
ments is also made in terms of storage and architectures.

The key idea to improve performance is to separate the process of
deduplication from data backup. Background information about
virtual machine snapshots are provided and the system that has
been implemented is discussed in stages.

Some of the core operations performed on virtual machine snap-
shots, such as inclusion and deletion of the snapshot and its effects
on the overall performance of the deduplication, were discussed.
After a brief note on the testbed on which the experiments were
conducted and the parameters used, some of the results of the vir-
tual machine backup performance, such as backup time and the
effects of multiple partition sizes, was discussed.

Storage Performance and Energy
Summarized by Kai Ren (kair@cs.cmu.edu)

Challenges in Getting Flash Drives Closer to CPU
Myoungsoo Jung and Mahmut Kandemir, The Pennsylvania State University

Myoungsoo Jung started his presentation by showing that the
traditional I/O controller hub (i.e., south bridge) is not suitable for
today’s high speed solid state disks (SSDs), since the old interface
can only provide limited bandwidth (600 MB/s). This leads to an
alternative approach to get flash memory (SSDs) closer to the CPU
by using the PCIe interface.

Myoungsoo presented two representative architectures designed
for PCIe SSDs: from-scratch SSD (FSSD) and bridge-based SSD
(BSSD). FSSD employs FPGA or ASIC-based native PCIe control-
lers, and runs flash management software in the host OS. In con-
trast, BSSD employs an on-board PCIe-to-SAS (or SATA) bridge
controller, and runs flash management software inside the on-
board controller.

Myoungsoo discussed the tradeoffs of the two architectures and
provided useful performance analysis. He showed that FSSD out-
performs BSSD. Specifically, FSSD is 40% better on latency, and
proved 21% and 80% better for read and write throughput, respec-
tively; however, he also found that FSSD requires more memory
in the host OS than BSSD (about 9 GB more), and consumes four
times more CPU cycles to complete I/O requests.

Lastly, he compared the two architectures with multi-worker
benchmarks. With more workers, both architectures suffer
higher latency, while the IOPS of FSSD increases; however, when

E L E C T R O N I C S U P P L E M E N T

 | OCTOBER 2013 | VOL. 38, No. 5 | HotStorage ’13 | WWW.usenix.org	 PAGE 6

stressing FSSD with many more workers, it continues to consume
more memory and CPU, and therefore its advantage decreases.

Someone asked whether there is a middle ground to take advan-
tage of both architectures, by moving a part of flash software (i.e.,
FTL) into host-OS while still keeping the SAS interface. Myoung-
soo said such middle ground is difficult to find because SATA
or SAS cannot provide any detailed information about low-level
operations required to perform FTL.

Runtime I/O Re-Routing + Throttling on HPC storage
Qing Liu, Norbert Podhorszki, Jeremy Logan, and Scott Klasky, Oak Ridge
National Laboratory

Qing Liu was trying to solve an important problem he faced when
managing an HPC cluster with 100,000 cores for many concur-
rent data-intensive applications in Oak Ridge National Labora-
tory: concurrent execution of many applications causes contention
in shared storage systems and, therefore, a reduction in I/O
throughput. Many applications have synchronization points, and
the slow down of one thread will cause other hundreds of thou-
sands of cores to wait, leading to lots of wasted CPU cycles. Qing
described some previous efforts to solve similar problems under
other contexts such as explicit QoS support, LFS, and chain log-
ging; however, these previous works may introduce other synchro-
nization points that may not be suitable for HPC.

Qing proposed a network-based solution by rerouting work to
nodes with lower loads, and throttling throughput to achieve a
higher degree of balance. The proposed approach comes from the
observation that the load on shared storage is bursty and unstable,
so an offline approach is not likely to mitigate hotspot problems
effectively; and second, the imbalance of the storage system is
often caused by a few outliers. Qing described their online I/O
rerouting mechanism inspired by these observations. Their solu-
tion implements a virtual messaging layer (VML) to redirect I/O
traffic to less loaded storage locations. VML uses a group-based
two-level control framework to coordinate the I/O traffic in a
scalable fashion. I/O redirecting happens during write phases,
and can mitigate the I/O variability; however, it may cause an
imbalance of data placement and affect later read phases. To
address this problem, they use a threshold to limit the amount
of write traffic that can be rerouted. Some results on synthetic
benchmark were presented to demonstrate the mitigation of I/O
variability in the write phase (about 2x speed up), and the slow
down in the read phase (about 2.3x slow down). Finding the bal-
ance between read and write phases is left for future work.

An audience member asked about the source of imbalance in stor-
age workloads. Qing answered that the imbalance comes from
both concurrent execution of different HPC applications and the
intrinsic property of these applications. Someone else asked why
previous QoS techniques could not be applied to solve the problem.
Qing answered that QoS techniques may introduce a centralized

scheduler that might not scale to 100,000 cores. Another person
wondered whether taking information from applications can help
with solving this problem. Qing replied that there is a wide range
of applications running in the cluster, and it is difficult to opti-
mize the storage system for just one portion of these applications.

Specialized Storage for Big Numeric Time Series
Ilari Shafer, Raja R. Sambasivan, Anthony Rowe, and Gregory R. Ganger,
Carnegie Mellon University

Current databases are not optimized for large-scale time series
data: they don’t consider properties of time series data, which
are mostly append-only and have a lower durability requirement,
and they do not optimize queries needed by time series analysis
such as range queries, multi-resolution access, and even multiple
streams analysis. Ilari Shafer’s talk focused on a specialized stor-
age system that uses lossless compression for efficiency and opti-
mized for range and multi-resolution queries.

His proposed approach considers the append-only properties and
uses a memory buffer to keep most recently inserted data. By
using a column-based schema, the storage layout stores time-
stamps and value fields separately. And the storage engine can
also use run-length encoding and delta compression to compress
data columns. A preliminary experiment shows that the storage
schema specialized for time series data can reduce the data size by
50% of the general approach. Future work will focus on finding the
right tradeoffs of space efficiency and query performance, as well
as seeking appropriate API for time series queries.

Someone asked if the range queries are on the value field instead
of the timestamp field, whether the append-only property goes
away. Ilari answered that the storage system can use the append-
only property to optimize range queries on the value field, and
needs to build a secondary index. Another question was whether
using SSD will change the system design. Ilari answered that SSD
adds differences and is a good direction for future work.

FDIO: A Feedback Driven Controller for Minimizing Energy
in I/O-Intensive Applications
Ioannis Manousakis, Manolis Marazakis, and Angelos Bilas, Foundation for
Research and Technology - Hellas (FORTH)

Ioannis started by highlighting the opportunity to save energy in
datacenters by using a holistic approach to track overall energy
consumption of all hardware components. He pointed out that pre-
vious work, which focuses on the CPU utilization-based method,
is not effective enough, especially for I/O-intensive workloads.

To demonstrate this idea, he presented a testbed system with
detailed per-component hardware instrumentations. He com-
pared standard Linux CPU governors with the best possible oper-
ating settings (by enumerating static DVFS setting points to find
the optimal point) under three different I/O workloads: TPC-W,
nsort, and TPC-H. For all cases, the optimal setting can double

E L E C T R O N I C S U P P L E M E N T

 | OCTOBER 2013 | VOL. 38, No. 5 | HotStorage ’13 | WWW.usenix.org	 PAGE 7

the system energy efficiency (reducing EDP by 50%) over existing
Linux governors.

In order to find the optimal DVFS setting point, the authors pro-
posed a feedback-driven controller called FDIO, which mini-
mizes system-level energy-related metrics (EDP) instead of just
CPU utilization level. FDIO tracks the energy consumption of
all hardware components from the sensors, and enumerates the
possible DVFS setting to determinate the best setting for cur-
rent workload.

In the nsort benchmark, they demonstrated that FDIO can dis-
tinguish the I/O-intensive phase and the CPU-intensive phase
to find out the optimal setting for both. Future work is to explore
ways to track multithread applications using control theory to
optimize the schema and other directions.

An attendee asked whether using other existing hardware instead
of specialized hardware to track energy consumptions is pos-
sible. Ioannis answered that the current Intel CPU provides many
fine-grained performance counters for CPU and memory, and one
can also use an analytic model to estimate the energy consump-
tions of other peripherals. Someone asked whether there is a way
to increase energy efficiency for running memory-bound applica-
tions. Ioannis answered that there are no good solutions currently
for these types of applications.

