
THE MAGAZINE OF USENIX & SAGE
February 2002 • Volume 27 • Number 1

The Advanced Computing Systems Association &

The System Administrators Guild

&

inside:
PROGRAMMING

THE TCLSH SPOT

by Clif Flynt

6

The previous Tclsh Spot article described a simple Tcl script to reformat the

output from tcpdump into a more human-readable format. Once you can

read the traffic between two systems, many things become easier. In this

article I’ll discuss one thing that can be done with the processed tcpdump

output.

When I wrote the tcpdump reformatting program, I needed to view the traffic between
a couple of systems that weren’t quite talking. A month or two later I needed to per-
form regression testing on a set of CGI scripts I was reworking. Being able to read the
interactions helped me see what was going on, but didn’t quite fulfill my desire for a
fully automated regression test.

I wanted to browse the pages using a normal HTML browser, fill in forms, etc., and use
the reformatted tcpdump transcript of the session to automatically generate a Tcl
script that would duplicate my actions. The next goal was to confirm that the results
were what I expected and report the elapsed time, so I could be certain that my modi-
fications actually improved performance. There is probably a package out there that
would do what I wanted, but I figured that in the time it would take me to track it
down, install, learn and customize it, I could write what I needed from scratch.

Between Tcl’s string manipulation tools and HTTP support, this application is pretty
simple. It consists of a main module with some utility procedures and a GUI to report
progress and results; the tests are simply Tcl scripts loaded with the Tcl source com-
mand.

The Tcl http package was described in a few Tclsh Spot articles about a year ago.
Briefly, the http package includes functions that enable a Tcl script to interact with a
Web server. These functions will send GET, POST, or HEAD requests, as a single execu-
tion stream, or with multiple operations in process simultaneously. You can configure
the calls to work directly connected to the Net, or through a firewall.

Tcl implements http support in the http:: namespace. Like a Java or C++ class, the Tcl
namespace command hides implementation details from the application developer.

This application uses the following two http commands:

http::geturl url downloads data from a URL and returns a token to use to access this
data.

http::data token returns the data associated with a token.

The automatic test building script converts HTTP GET commands that resemble this:

GET /cgi_bin/search.tcl?search=books&name=flynt HTTP/1.0

to a geturl command like this:

set token10 [http::geturl \
http://$Test(httpServer)/cgi_bin/search.tcl?search=books&name=flynt]

These lines instruct the server to invoke the cgi_bin/search.tcl script, passing
search=books&name=flynt as the query string. The CGI script is responsible for
unpacking the string into keyword and value pairs.

The HTTP protocol supports two data retrieval operations, GET and POST. The GET
command is the simplest and most common command. It can simply request a static
HTML document, or can be used to pass additional data to be used by a CGI-type

Vol. 27, No. 1 ;login:

by Clif Flynt

Clif Flynt is president
of Noumena Corp.,
which offers training
and consulting serv-
ices for Tcl/Tk and
Internet applications.
He is the author of
Tcl/Tk for Real Pro-
grammers and the
TclTutor instruction
package. He has
been programming
computers since
1970 and a Tcl advo-
cate since 1994.

clif@cflynt.com

the tclsh spot

script by adding a set of keyword/value pairs to the end of the script URL. The data
being passed is separated from the main URL with a question mark, and individual
keyword value pairs are represented as keyword=value and are separated by amper-
sands.

There is a limit to the number of characters you can transmit on a single line, and
some CGI submissions can exceed this length (for instance, if you are filing a software
bug report).

The POST command solves this problem by treating the keyword/value pairs as the
body of an HTML message. A dump of the search query done as a POST command
would resemble:

POST /cgi_bin/search.tcl HTTP/1.0
Content-type: application/x-www-form-urlencoded
Content-length: 23

search=books&name=flynt

The first line is the POST command and the next two lines are the HTTP header.

HTTP messages are formatted like email messages. There is a header in which each
line consists of a keyword followed by a colon, followed by data, terminated with a new
line. The header is terminated with a blank line, and the body of the message follows
that.

By default, the http::geturl command will generate a GET command. If your script uses
the -query option, a POST is generated. This script would generate the POST com-
mand.

set token10 [http::geturl \
http://$Test(httpServer)/cgi_bin/search.tcl \
-query "search=books&name=flynt"

Since the HTTP protocol is stateless, most Web servers use a cookie to link a user to
some state information that is being maintained on the server (e.g., items in a shop-
ping cart). The cookie value (and other information) is passed in the HTTP header
block.

The http package generates a simple header to declare that this HTTP message was
generated by the Tcl http package, etc. If you want to pass other parameters in the
HTTP header, you can do this with the -headers option.

The -headers option accepts a list of keyword and value pairs that it will reformat as a
MIME-style HTTP header.

For example, this code would add the line

Cookie: chocolatechip

to the header:

http::geturl http://$Test(httpServer)/cgi_bin/search.tcl\
-query search=books&name=flynt \
-headers {Cookie chocolatechip}

By default, the http::geturl procedure will block until the URL has been retrieved. For
many Web robots this is a good technique, but for an interactive test application, you
can’t freeze the test platform GUI while the Web server is busy thinking.

7February 2002 ;login: THE TCLSH SPOT ●

●

PR

O
G

RA
M

M
IN

G

Vol. 27, No. 1 ;login:

The -command option will register a Tcl script to be evaluated when the URL has been
retrieved. When the callback script is evaluated, a token to identify the data will be
appended to the callback script. You can use this token as an argument to a procedure
to retrieve the HTML page to process.

This code would request an HTML page and process the page within the checkPage
procedure when it becomes available:

proc checkPage {identifier token} {
global correctPages
set data [http::data $token]
set dataLength [string length $data]
set correctLength [string length $correctPages($identifier)]
if {([string first $correctPages($identifier) $data] == 0) &&

($dataLength == $correctLength)} {
Report OK

} else {
Report mismatch

}

}

http::geturl -command "checkPage searchPage" \
http://$Test(httpServer)/cgi_bin/search.tcl?search=books&name=flynt

We can also use the -command option to start several simultaneous searches running
on a server with code like:

set tclAuthors {ousterhout welch flynt harris mclennan smith nelson}
foreach author $tclAuthors {

http::geturl -command "checkPage $author" \
http://$Test(httpServer)/cgi_bin/search.tcl?search=books&name=$author

}

As each search completes, Tcl will invoke the checkPage procedure with the author’s
name as an identifier, and a token to use to access the page retrieved from the Web
server.

For this application, I didn’t want multiple geturl commands active at once. I wanted
just one HTTP interaction active at a time, but I still needed to allow the GUI to
update (and a cancel button to interrupt the test). This means I needed to pause the
script execution after issuing each http::geturl request and wait until the page was
retrieved.

The vwait command causes the interpreter to enter the event loop and process events
until the registered variable is assigned a new value.

Syntax: vwait varName

varName The variable name to watch. The script following the vwait command will
be evaluated after the variable’s value is modified.

A script like this will initiate an http::geturl interaction, return control to the Tcl event
loop, and wait for the HTML page to be retrieved before going on to the next com-
mand.

proc checkPage {pageFile token} {
global doneFlag

8

set newPage [http::data $token]
Compare newPage to pageFile

set doneFlag 1
}

http::geturl $site -command {checkPage fileName}
set doneFlag 0
vwait doneFlag

The next problem is validating the page that was just retrieved.

One simple solution to this problem is to create a good set of pages, and compare the
new page to a known good page. That’s the reason for the pageFile argument to the
checkPage procedure. It’s the name of a file to compare to the new page.

The Tcl gets command will read a single line of data from a channel. For this applica-
tion we want to read an entire file, so it’s simpler to use the read command which will
read the file in a single action.

Syntax: read channelID ?numBytes?
The numBytes parameter is optional. If it’s provided, the Tcl interpreter will read that
many bytes (or up to the EOF). If there is no numBytes, the read command will read
data until it reaches the EOF.

The code to compare pages looks like this:

set newPage [http::data $token]

set if [open $pageFile]
set oldPage [read $if]

if {([string first $oldPage $newPage] != 0) ||
([string length $oldPage] != [string length $oldPage])} {
fail

} else {
success
}

My first thought for comparing the two pages was to use the string match command.
However, the string match command will match a glob-style pattern to a string, rather
than comparing two exact strings. The string match command will work for most sim-
ple tests, but will break when the real data includes metacharacters like *, ? or square
braces.

The string first and string last commands compare characters with no wildcards, so
these commands can be used to compare strings that may have magic characters in
them. If the strings are identical, the first character where they match will be the first
character of the string: position 0, since Tcl uses 0-based strings and arrays.

The string length command returns the number of characters in a string. This is used
to compare the lengths of the two pages, to be certain that there is no trailing data to
worry about.

The last item on my want list was for my test harness to report how long each HTTP
interaction took. The Tcl clock command will report or format a time in seconds. The
clock command can also report time in the smallest unit that the platform will support

9February 2002 ;login: THE TCLSH SPOT ●

●

PR

O
G

RA
M

M
IN

G

Vol. 27, No. 1 ;login:

(usually milliseconds), but won’t reformat that value directly into a human-readable
string.

Syntax: clock subcommand args
subcommand The clock command supports several subcommands including:

seconds Returns current time and date in seconds since a system
defined epoch.

clicks Returns current time and date as a system dependant inte-
ger, usually milliseconds since the last clock rollover.

format Converts a time in seconds to a human-readable format.
There are many formatting commands to fine-tune the
output.

For this application, seconds were adequate, and the elapsed time can be calculated
with a simple expr command like:

set startTime [clock seconds]
Do stuff
set elapsedSeconds [expr [clock seconds] - $startTime]

Since the checkPage procedure can compare pages and calculate elapsed time, we
might as well make the return value a human-readable string for a final report.

The format command is ideal for generating reports with columns of data.

Syntax: format formatString value1 ?value2?...
The formatString resembles a C language printf string, with %d to substitute an integer,
or %s to substitute a string at a location, etc.

Like the C language printf command, the format command format string can have a
number between the percent symbol and the format identifier to define how many
characters wide the field should be, and whether to make the string flush to the left or
right margin.

So, a final version of checkPage with page checking, time calculation, and formatted
output resembles:

proc checkPage {pageFile startTime identifier token} {
global resultString
set elapsedSeconds [expr [clock seconds] - $startTime]

set newPage [http::data $token]

set if [open $pageFile]
set oldPage [read $if]

if {([string first $oldPage $newPage] != 0) ||
([string length $oldPage] != [string length $oldPage])} {
set result "error"

} else {
set result "ok"

}
set formatString {%-10s %-30s %8s seconds}
set resultString [format $formatString $result $identifier $elapsedTime]

}

When this is invoked with a command like:

10

http::geturl $site -query $query -headers $headerList\
-command "checkPage page1 [clock seconds] $name"

vwait resultString

it will assign resultString a string like this:

fail /booksearch.tcl?author=flynt 23 seconds

which can be displayed in a text widget.

A simple GUI for this harness would be a label to show which CGI script is being
tested, an exit button, and a simple text widget to display the results.

label .l -textvar statusLabelVar
grid .l -row 0 -column 0

button .b -text exit -command exit
grid .b -row 0 -column 1

text .t -height 23 -width 80 -font {courier 12}
grid .t -row 1 -column 0 -columnspan 2

By default, a text widget is created using a proportional font. This makes a nice, easy-
to-read display, but is difficult to use for columnar output, since different characters
have different widths. The courier font is a fixed-width font that’s supported on all
platforms.

The test scripts are generated by stepping through the readable tcpdump text looking
for GET and POST commands sent from the browser to the Web server. When one of
these commands is found, the script will extract the URL, header information, and
message body and generate a Tcl script to duplicate the browser action and display the
report lines in the text widget.

Each HTTP interaction in the test script resembles this:

http::geturl testsite.com:/booksearch.tcl?author=flynt \\
-command "checkPage page50 [clock seconds] 50 booksearch.tcl?author=flynt \\"

-headers {Cookie {cookieVal=chocolateChip; mode=Frames}}

set statusLabelVar /booksearch.tcl?author=flynt

set resultString 0
vwait resultString
.t insert end "$resultString\n"

The script that converts the HTTP conversation to a Tcl script needs to substitute
some values when the test script is generated (like the search parameters), while other
substitutions are done when the test script is evaluated. For instance, if the square
bracket substitution around the clock seconds command were done during test gener-
ation, the test script would measure the time from when the script was generated until
the new page was returned, instead of the time from when the HTTP request was sub-
mitted until the new page was returned.

Controlling when substitutions will occur when generating new Tcl commands within
a Tcl script can get tricky, especially if you want the script you are generating to per-
form some Tcl substitutions when you are generating the script, and others at run-
time.

11February 2002 ;login: THE TCLSH SPOT ●

●

PR

O
G

RA
M

M
IN

G

Vol. 27, No. 1 ;login:

You can handle this by escaping the Tcl control symbols ($, [and]) with backslashes,
but that gets confusing and hard to read very quickly.

For example, to generate this code:

set tmpVariable [expr $variable1 + 2]
puts $tmpVariable
set tmpVariable [expr $variable2 + 3]
puts $tmpVariable

the commands using backslash escapes and brackets might resemble this:

for {set i 1} {$i < 2} {incr i} {
puts "set tmpVariable \[expr \$variable$i + [expr $i + 1]\]"
puts {puts $tmpVariable}

}

A better solution is to generate the new lines using the Tcl format command.

When the formatString is placed in curly braces, the normal Tcl substitutions phase is
disabled. This allows us to use otherwise special characters inside the formatString and
merge in substituted values with %s and %d. Separating the characters you want to
output as literals from those you wish to be substituted makes the code easier to main-
tain.

This script would generate the code above using format commands instead of back-
slash escapes:

for {set i 1} {$i < 2} {incr i} {
puts [format {set tmpVariable [expr $variable%s + %d]} $i [expr $i+ 1]]
puts {puts $tmpVariable}

}

The formatString can be hardcoded, as shown above, or saved in a Tcl variable like this:

set id 10
...
set fmt {set %s [http::geturl }
puts [format $fmt token$id]\\

There’s no advantage to using variables instead of hardcoded strings in the format
command, except that using the variable makes the code fit better on these pages.

This procedure will generate a test script from values extracted from the tcpdump out-
put. I only used the format command for output that needed runtime substitutions.

set State(id) 0

proc writeCmd {} {
global State

set lastSlash [string last / $State(url)]
set identifier [string range $State(url) $lastSlash end]

puts "http::geturl $State(site)/$State(url) \\"
if {[string match $State(type) post]} {

puts " -query [string trim $State(body)] \\"
}
set fmt { -command "checkPage %s [clock seconds] %s %s \\"}
puts [format $fmt page$State(id) $State(id) $identifier]

12

puts " -headers {$State(headers)}"
puts " "

set lastSlash [string last / $State(url)]
puts "set statusLabelVar $identifier"
puts " "

puts "set resultString 0"
puts "vwait resultString"
set fmt {.t insert end "$%s\n"}
puts [format $fmt resultString]
puts "\n"

foreach index {url headers body} {
catch {unset State($index)}

}
incr State(id)

}

Extracting the appropriate values from the tcpdump output can be done with a simple
state engine. Anyone interested in that part of the code can find it at http://www.
noucorp.com.

13February 2002 ;login: THE TCLSH SPOT ●

●

PR

O
G

RA
M

M
IN

G

http://www

