
THE MAGAZINE OF USENIX & SAGE
December 2001 • Volume 26 • Number 8

The Advanced Computing Systems Association &

The System Administrators Guild

&

inside:
PROGRAMMING

A Quick Introduction to Database

Systems

By Richard Leyton

24

Introduction
One important area of computing systems management is often overlooked

by system administrators but accounts for some of the biggest, most com-

plex, and frequently most important systems for which we are responsible.

That area is databases, and they’re overlooked because they’re perceived by

many to be boring, concerned with old technology, unreliable, and the

cause of many headaches. To top it all, too often they don’t really do very

much that’s noticeable or interesting.

It’s my belief that none of these perceptions have any validity; databases are an inter-

esting, challenging, and evolving area of technology, which, if implemented and sup-

ported well, can bring a perceptible benefit to the system administrator, the system

itself, and, of course, the users of the systems and of the institution.

What Is a Database?
In its very simplest form, a database can be viewed as a “repository for data.” Tautolog-

ical as it sounds, this repository is tasked with maintaining and presenting the data in a

consistent and efficient fashion to the applications, and the users of such applications,

that use it. It is these factors which complicate the matter.

Before databases appeared as a separate technology, data was stored in a variety of

ways, often proprietary and specific to the implementation in question. Data couldn’t

be shared and couldn’t be utilized outside of the application in which it resided. This

clearly proved problematic – a company had the data, but couldn’t do more with it —

as new requirements came about.

Databases evolved to take responsibility for the data away from the application, and,

most importantly, enable it to be shared. As applications grew and new applications

appeared, a single data repository evolved, a repository that all applications could

access (in an agreed format and model, of course).

Of the many forms possible, today’s databases are usually “relational databases.’’ This is

not the only variety but has gained ascendancy because it is simple and effective. Older

models include the “hierarchical’’ and “network’’ (N.B., not like the Internet) models,

which can still be found in legacy mainframe environments. These models lost favor

because they focused on storage issues rather than data issues. Newer and increasingly

popular data models include object-oriented and object-relational, which can in cer-

tain circumstances map nicely to object-oriented systems.

But relational databases continue to form the bulk of database systems and are the

focus of most books on database design and implementations. Relational databases

became popular because they stripped away the machine-specific storage mechanics of

the older models so developers no longer needed to worry about how the data was

stored and how to retrieve it; they could focus on the data itself and concentrate on

building functionality-rich applications.

Oracle (producer of one of the first commercial relational database implementations)

was formed out of the research work undertaken at IBM on their System/R research

work. The rest, as they say, is history. Now IBM, Sybase, Computer Associates, and var-

ious others have established very mature, stable products (though they are not market

leaders). And new companies are entering the market all of the time: Clustra, RedHat,

a quick introduction
to database systems

Vol. 26, No. 8 ;login:

Richard Leyton

Richard Leyton is a
senior consultant at
Paremus Limited, a
newly established
technology consul-
tancy company
(http://www.
paremus.com). He
has over 10 years
experience with UNIX
and has worked with
various database sys-
tem installations in
and around finance
and the dot-com
industry.

richard@leyton.org

●

PR

O
G

RA
M

M
IN

G
| C

O
M

PU
TI

N
GVersant, and the GNU project are all producing database systems that offer something

new and innovative, keeping the established players on their toes.

What Must a Database Product Provide?
■ Consistency: It must ensure that the data itself is not only consistently stored but

can be retrieved efficiently. This is even more critical when changes to the data

occur without warning.

■ Concurrency: It must enable multiple users and systems to all retrieve the data at

the same time and to do so logically and consistently. Concurrency problems will

be familiar to many readers, but in a database environment, concurrency is fur-

ther complicated by the necessity to undo changes made in certain circumstances

(e.g., deadlocks and aborted transactions).

■ Performance: Users will be very demanding if faced with long response times.

Scaling to cope with large numbers of users, all with demands on the resources,

can become complex (but it’s not rocket science). The database administrator can

help by reviewing the access strategies to the data (indexes, caching and compute

resources). Sometimes, a very simple change to some or all of these components

can significantly improve performance (and sometimes decrease it elsewhere).

■ Standard adherence: Most people have heard of SQL (Structured Query Lan-

guage). It was envisaged by the original researchers at IBM as a query language

designed specifically for the relational model to enable programmers to specify

how the data should be extracted from the database in an easy way that is inde-

pendent of the programming language being used. Most databases support the

ANSI-ratified SQL92. Additionally, connectivity standards are required. Two of

them – ODBC and JDBC – provide common APIs to the database, which gives

developers a greater degree of flexibility over which underlying platform they use.

■ Security: A database that provides access to any data for any user and also allows

them to change it is not really suitable to many business applications. Database

systems solve this through access permissions (much like files at the operating-

system level) and specific database mechanisms such as triggers.

■ Reliability: Of course, databases must keep their stored data intact. Additionally,

coping well when things go awry is often a good indicator of the strength of a sys-

tem administrator and the strength of a database system. A database must, if set

up properly, be able to recover to a known consistent point. The use of write-

ahead logs (transaction logs) facilitates this but can introduce performance bottle-

necks. Needless to say, after repairing a faulty disk array, the very very last thing an

administrator wants to deal with is a corrupted or unusable database.

Beyond the Basics
Once the idea of databases was established, databases could store and retrieve data effi-

ciently, effectively, and reliably. Then vendors began to add features to enhance this

basic functionality and give them a competitive edge. Some of the extensions have

included the following.

PROGRAMMING LANGUAGES TO MANAGE THE DATA
Oracle has PL/SQL; Sybase/Microsoft have T-SQL. These languages go beyond the de

facto standard “SQL” and add functionality (iterative loops, variables, procedures and

25December 2001 ;login:

A database that provides

access to any data for any

user and also allows them

to change it is not really

suitable to many business

applications.

DATABASE SYSTEMS ●

Vol. 26, No. 8 ;login:

mathematical functions) you’d normally find in more commonly known program-

ming languages. This helps users manage data effectively but also reduces portability.

MAINTENANCE OF DATA INTEGRITY
Data is really only useful if it has some meaning (i.e., data in the “employee” table that

is only employee information and not corrupted by, say, supermarket prices). When

data is inserted, deleted, or modified in the database, implicit meaning can be (or

might need to be) associated with that data. By using mechanisms known as “triggers’’

(code that is executed on such events), databases can maintain, introduce, or enforce

the meaning. For example, when adding an employee to a database, checks are made to

ensure that their social security number is stored and that their manager is defined.

CONNECTIVITY
A client application must be able to communicate effectively with the database. Ven-

dors often produce native drivers/libraries for client programs in order to enable effi-

cient connections and queries. However, in this time of open standards, several new

bridging and connectivity standards enable programmers to program independently

of the actual underlying database: ODBC (the Microsoft-instigated Open Database

Connectivity), JDBC (Java Database Connectivity), and Roguewave’s DBTools are the

three most widely known.

Unfortunately, database independence too often comes at a cost, as it often becomes

difficult to avoid using a vendor’s features as a quick solution for a complex problem.

This can place a greater burden on the application developer as the client or applica-

tion server might need to undertake more work. Furthermore, performance can also

decline since only SQL92 standard queries can be used. The matching (impedance, if

you will) between a set of standard function calls and the vendor’s calls (especially in

older database client libraries) can incur a client-side penalty.

REDUNDANCY/RELIABILITY/RECOVERY
Over the last few years, highly available systems have been demanded, with downtime

of, at worst, minutes per month (five minutes per month is 99.99% reliability) rather

than hours per month (99.7% reliability is just two hours per month of downtime).

Database vendors have been somewhat slow to recognize this, but products and solu-

tions are now widely available. Many of them take the approach that high availability

needs to be offered in conjunction with operating system vendor cluster/high-avail-

ability solutions. Others take the approach that operating systems can’t be trusted in

this regard and implement a distributed redundant approach themselves as an integral

part of the product.

Recovery of a failed system (or resorting to a known-safe point in time) is crucial, but

backups of huge systems can take a correspondingly huge amount of time, even with

the best backup system in the world. Incremental dumps are vital too. Being able to

restore a system to a particular point in time is important, especially when dealing

with time-sensitive data or situations. By dumping out the transaction/activity logs,

many database vendors have been able to offer acceptable backup solutions to a very

fine level of granularity.

Data is really only useful if it

has some meaning.

26

Getting Started
It would be foolish to assume that a short article like this can cover the entire subject

area of database systems. But hopefully it has presented some of the basics. There are,

of course, plenty of books that serve as good, comprehensive introductions to data-

bases, which the interested reader might wish to consider.

C.J. Date’s An Introduction to Database Systems is widely considered to be the best all

around, in-depth book.

Theory and Practice of Relational Databases, by Stefan Stanczyk, Bob Champion, and

Richard Leyton ably initiates the reader into both the theory and practice issues of

databases. For more information, visit http://www.theorypractice.org.

There are plenty of resources online, too. Here are two of the best:

http://directory.google.com/Top/Computers/Software/Databases/

http://uk.dir.yahoo.com/Computers_and_Internet/Software/Databases/

Next Up
In upcoming issues, some of the following areas will be covered in more depth:

■ Recent developments and innovations in database technology
■ Open source databases vs. closed source databases
■ Performance tuning database installations
■ Improving reliability of database installations
■ Integrating databases in corporate environments

References
The paper that started the relational model: http://www.acm.org/classics/nov95/.

27December 2001 ;login:

●

PR

O
G

RA
M

M
IN

G
| C

O
M

PU
TI

N
G

DATABASE SYSTEMS ●

http://www.theorypractice.org
http://directory.google.com/Top/Computers/Software/Databases/
http://uk.dir.yahoo.com/Computers_and_Internet/Software/Databases/
http://www.acm.org/classics/nov95/

