
THE MAGAZINE OF USENIX & SAGE
October 2001 • Volume 26 • Number 6

inside:

PROGRAMMING

The Tclsh Spot

By Clif Flynt

The Advanced Computing Systems Association &

The System Administrators Guild

&

59October 2001 ;login:

The previous Tclsh Spot article described a simple telnet client that would

report the initial configuration options. This article will expand the sniffer

into a client that can interact with a server, maintain its internal state, and

respond to various commands the server can send. In the course of this, I’ll

demonstrate some things we can do with the Tcl namespace.

The Tcl namespace command provides a private, named area in a Tcl script where
data and procedures can exist without interfering with other data and procedures that
might have the same names. A Tcl namespace can implement most of the capabilities
of a Java or C++ class.

A Tcl script is most useful when it’s merged into other Tcl code. You can merge one
Tcl script into another with the source command which loads a script into a Tcl pro-
gram, and evaluates the commands in that script before evaluating the next line of the
original script.

Syntax: source fileName

This is similar to the C language #include or the C-shell source command. This is a
simple technique, and it works well for many applications.

However, if you source two packages that have overlapping names for variables or pro-
cedures, the last package you load will overwrite the procedure body or data values set
by the first package.

We can use the Tcl namespace command to create a private, named area in our telnet
client where data and procedures can exist without interfering with other data and
procedures that might have the same names.

A namespace is created with the namespace eval command:

Syntax: namespace eval namespaceID arg ?args?

namespace eval Create a namespace, and evaluate the script arg in that scope. If
more than one arg is present, the arguments are concatenated
together into a single command to be evaluated.

namespaceID The identifying name for this namespace.
arg ?args? The script or scripts to evaluate within namespace namespaceID.

The variables defined within a namespace will last until the namespace is destroyed by
the namespace delete command. This makes a namespace an ideal place to keep a
package’s internal state.

The state information for the telnet sniffer application was held in a global associative
array. A telnet namespace with that array included in it can be created with code like
this:

namespace eval telnet {
variable Telnet

The variable command declares a Tcl variable within a namespace. When the variable
command is used outside a procedure, it creates a variable within a namespace and
initializes it to an optional value. When the variable command is used within a proce-
dure, it maps a variable from that namespace scope into the procedure’s local scope.

the tclsh spot
by Clif Flynt

Clif Flynt is president
of Noumena Corp.,
which offers training
and consulting serv-
ices for Tcl/Tk and
Internet applications.
He is the author of
Tcl/Tk for Real Pro-
grammers and the
TclTutor instruction
package. He has
been programming
computers since
1970 and a Tcl advo-
cate since 1994.

clif@cflynt.com

●

PR

O
G

RA
M

M
IN

G
| C

O
M

PU
TI

N
G

THE TCLSH SPOT ●

Vol. 26, No. 6 ;login:60

Syntax: variable varName ?value? ?var2? ?val2?

varName The name of the variable to create, or map into local scope.
value An optional value for this variable. If the variable already has a

value, the new value will overwrite the old.

The sniffer program used two global arrays, the telnet array that held the state infor-
mation, and the Lookups array that was used to map from hex values to human-
friendly information strings. The Lookups array was created at run time by scanning
the telnet.h include file and massaging the #define xx yy lines into Tcl array assign-
ments in a simple procedure.

Any Tcl code can be evaluated within the namespace eval body. We can evaluate the
readIncludeFile procedure to create the Lookups array within the telnet namespace,
and can even use the source command to load the script that includes this procedure
into the namespace.

namespace eval telnet {
variable Telnet

source readincl.tcl

readIncludeFile Lookups /usr/include/arpa/telnet.h
set Lookups(UNKNOWN.-1) "Unknown Option"

By sourcing the readincl.tcl script within the namespace, the readIncludeFile procedure
is defined within the namespace. This procedure is available for use within the name-
space but is not easily visible from the outside world.

Tcl namespaces are a tree-structured construct, like a file system or graphics windows.
Where a POSIX-style file system uses a slash to separate parent from child directory,
namespaces use a double colon to delimit parent and child namespaces.

When Tcl is started, the default, top level, namespace is ::. The namespace eval telnet
{...} command creates a new namespace ::telnet.

Unlike Java or C++ classes, there is no privacy in a Tcl namespace. The Tcl philosophy
is to make as much information as possible available to the programmer. Thus, you
can always access a member of a Tcl namespace by its full namespace pathname.

We can define a procedure within the telnet namespace with a normal looking Tcl
command like:

namespace eval telnet {
...
proc openSocket {address} {

variable Telnet
set Telnet(socket) [socket $address 23]

}
}

We could invoke the procedure from outside the namespace with a command like:

::telnet::openSocket 127.0.0.1

Java and C++ let the application programmer know the private and public API by
restricting access to non-public methods. Since any procedure within a namespace can
be invoked from outside the namespace, we need a mechanism to let the programmer
know which are public and which are private methods.

61October 2001 ;login:

One convention used within Tcl is that public methods start with a lowercase letter
and private methods start with an uppercase letter. The rationale is that it takes an
extra keystroke to type an uppercase letter. This forces programmers to recognize that
they are violating the package’s intended use by calling this procedure.

The Tcl namespace also includes a namespace export command to declare which pro-
cedures are part of the external API.

Including this line in the namespace eval body tells the application programmer that
the external API for this namespace is the openSocket, binarySend, and telnetEvent
procedures.

namespace export openSocket binarySend telnetEvent

Along with using a namespace to hide variables, we sometimes use a namespace to
hold just procedures. This ensures that we don’t have procedure-naming collisions
when our application sources several files.

We could define a namespace that has functions to convert strings of binary data to
hex digits like this:

namespace eval binaryStrings {
namespace export bin2hex hex2bin

proc bin2hex {binaryString} {
binary scan $binaryString "H*" hexData
regsub -all {..} $hexData {\0 } hexList
return $hexList

}

proc hex2bin {string} {
regsub -all " " $string "" string
set line [binary format "H*" $string]
return $line

}
}

One of the strengths of the Tcl namespace is that they can be nested. This implements
the OO composition (or “has-a”) feature. For example, the binaryStrings namespace
can be embedded in the telnet namespace with code like:

namespace eval telnet {
source binaryStrings.tcl
...

}

Just as file systems support absolute naming by starting from the root file system
(/usr/local/bin/tclsh) or relative naming, by starting from the current directory
(subdir/file), Tcl namespaces can be accessed by either absolute or relative names.

The procedures in binaryStrings can be invoked from within the telnet namespace as:
::telnet::binaryStrings::hex2bin or binaryStrings::hex2bin.

Since the telnet namespace may be included in another namespace, it’s best to use rela-
tive naming when embedding one namespace within another.

Alternatively, since the public API for the binaryStrings namespace is exported, we can
use the namespace import command to import those procedures into the current
namespace. This would let us invoke the procedures without any namespace prefix.

THE TCLSH SPOT ●

●

PR

O
G

RA
M

M
IN

G
| C

O
M

PU
TI

N
G

Vol. 26, No. 6 ;login:

namespace eval telnet {
source binaryStrings.tcl
namespace import binaryStrings::*
...
set hex [bin2hex $binaryValue]

}

Using the namespace import command undoes the protection from procedure-name
collisions that we got from using namespaces, but within a controlled environment
(like a namespace), the namespace import command can make code easier to read.

These techniques let us set up a telnet namespace for the sniffer that was developed in
the last article. In order to handle real telnet client-server interactions, the script needs
to be able to handle the negotiation commands and retain state information about the
supported and unsupported options.

The telnet protocol includes a lot of subnegotiation options ranging from a need to
echo characters to supporting defining data rates and terminal size.

Implementing these options follows a pattern – they have a current value and react to
demands that the option be supported or not supported.

The reaction to a command varies depending on the state of that option. For example,
if an option’s status is to be supported, and the server sends a message to not use that
option, the client should send a return message that the option won’t be used. How-
ever, if the option was already turned off, no reply should be sent.

We could implement this with a set of objects that include the current state informa-
tion and procedures to report the contents. We could use one object for each option,
and use Tcl’s ability to nest namespaces to hold all the option namespaces with the tel-
net namespace.

If we were writing this in a true object-oriented language like C++ or Java, we might
have a base class for options and two derived classes for supported and unsupported
options.

We can implement the inheritance (or “is-a”) feature of true OO languages with the
namespace command by using a base command to initialize a namespace and another
set of commands to set the personality of the class.

In C++ terms, the script used to initialize the namespace is the base class, and the per-
sonality commands implement the methods in the derived class.

We can use the hex values of the commands to name the procedures in the option
namespaces, just as we did in the sniffer program. This makes the parsing simpler (let
Tcl do it). Because we have separate namespaces for the various procedures (fb, fd, 01,
etc.), they don’t conflict with each other or with the procedures sharing that name in
the telnet namespace.

We can define the names of the namespaces on the fly. To make the code easier to write
(if a bit more cryptic for reading), I’m using a naming convention of XX.TELOPT for
the option namespaces, where XX is the hex value of the option number.

The code to define namespace objects for unsupported features looks like this:

62

set baseClass {variable clientValue %s supported %s;}

foreach cant {00 05 21 22 23 24 25 26 27 } {
namespace eval $cant.TELOPT [format $baseClass "" 0]
namespace eval $cant.TELOPT [format "proc fb {} {return fffe%s}" $cant]
namespace eval $cant.TELOPT [format "proc fd {} {return fffc%s}" $cant]
namespace eval $cant.TELOPT "proc 01 {} {return {}}"
namespace eval $cant.TELOPT [format \

{proc fe {} {variable supported;
if {$supported} {

return fffc%s
} else {

set supported 0;
return {}}

}} $cant]
}

For supported options, it’s a bit more complex, since some options have data that must
be reported when requested. Here’s code that will create objects for the supported
options.

foreach {can initialVal} {18 "dumb"
1f "0x00500018"
20 "57000,57000"
03 "01"
01 "01"} {

namespace eval $can.TELOPT [format $baseClass $initialVal 1]
namespace eval $can.TELOPT [format "proc fd {} {return fffb%s}" $can]
namespace eval $can.TELOPT [format "proc fb {} {return fffd%s}" $can]

if {[string first 0x $initialVal] == 0} {
set hex [string range $initialVal 2 end]

} else {
binary scan $initialVal H* hex

}

proc $can.TELOPT::01 {dummy} [format "return fffa%s00%sfff0" $can $hex]

namespace eval $can.TELOPT {proc 00 {val} {variable serverValue;
set serverValue $val}}

namespace eval $can.TELOPT [format \
{proc fe {} {variable supported;

if {$supported} {
return fffc%s

} else {
set supported 0;
return {}}

}} $can]
}

The code to support the fb, fc, fd, and fe commands (WILL, WON’T, DO, and
DON’T) in the telnet namespace are fairly simple. They look like this:

WILL command fb : Reply DO(fd) or DONT(fe)
proc fb {subl textName oobName} {

variable Telnet
upvar $oobName oob

63October 2001 ;login:

●

PR

O
G

RA
M

M
IN

G
| C

O
M

PU
TI

N
G

THE TCLSH SPOT ●

Vol. 26, No. 6 ;login:

set opt [lindex $subl 0]
AddInfo $subl TELOPT_
append oob [eval $opt.TELOPT::fb]

return 1
}

The fa (SUBNEGOTIATION) command is a bit trickier, since the negotiation may be
a request for the value, or a value being supplied.

The format for this command is either

ff (IAC) fa (SB) 1 (request data) ff (IAC) f0 (SE)

or

ff (IAC) fa (SB) 0 (provide data) DATAVALUES ff (IAC) f0 (SE).

The code to implement the fa command is:

proc fa {subl text oobName} {
variable Telnet
upvar $oobName oob
Starts with character after the ‘fa’
Debugputs “Dealing with: [lrange $subl 0 20]”
set count 1
set type [lindex $subl 0]
set action [lindex $subl 1]
foreach {p2 data} [FindFFF0 $subl] {}

append oob [$type.TELOPT::$action $data]
AddInfo $subl TELOPT_
return $p2

}

That covers the interesting parts of this script. As usual, the full source code (about 450
lines) is available at
http://noucorp.com/cgi-bin/noucorp/generic.tcl?dir=/home/httpd/html/tcl/login.

64

http://noucorp.com/cgi-bin/noucorp/generic.tcl?dir=/home/httpd/html/tcl/login

