
THE MAGAZINE OF USENIX & SAGE
October 2001 • Volume 26 • Number 6

inside:

PROGRAMMING

Variable Length Arrays

By Glen McCluskey

The Advanced Computing Systems Association &

The System Administrators Guild

&

65October 2001 ;login:

We’ve been looking at some of the features added to C9X, the recent stan-

dards update to C. In this column we’ll consider the use of variable length

arrays (VLAs).

Some Basics
Suppose that you need to allocate an array in your program, but when you’re writing
the program, you don’t know how long the array should be. What do you do in such a
case? An obvious answer is to use malloc() and dynamic allocation. This approach will
certainly work, but has a couple of problems. One is that you need to worry about
freeing up the storage when you’re done with it to avoid memory leaks, and another is
that dynamic allocation for multidimensional arrays gets complicated.

C9X offers another approach, the use of VLAs. Here’s an example of what such usage
looks like:

#include <stdio.h>
#include <stdlib.h>

int main(int argc, char* argv[])
{

if (argc != 2) {
fprintf(stderr, "Missing numeric argument\n");
return 1;

}

int n = atoi(argv[1]);

int x[n];

printf("sizeof = %d\n", sizeof(x));

return 0;
}

A numeric value representing an array length is passed to the program, and an array of
this length is allocated. When the array goes out of scope, its storage is automatically
reclaimed.

The size of the array is calculated at run time. For example, if you specify an argument
of 10, and the size of an int on your machine is 4, then 40 will be printed.

The array is of fixed size once it’s allocated, but its size is not fixed until the flow of
control passes the declaration.

Variable Length Arrays as Function Arguments
Here’s another example of how you can use VLAs, passing them as function argu-
ments:

#include <stdio.h>

typedef void (*fp)(int, int[*][*]);

void f(int, int[*][*]);

int main()
{

int n = 2;

variable length
arrays

by Glen
McCluskey

Glen McCluskey is a
consultant with 20
years of experience
and has focused on
programming lan-
guages since 1988.
He specializes in Java
and C++ perfor-
mance, testing, and
technical documen-
ta-tion areas.

glenm@glenmccl.com

●

PR

O
G

RA
M

M
IN

G
| C

O
M

PU
TI

N
G

VARIABLE LENGTH ARRAYS ●

Vol. 26, No. 6 ;login:

int x[n][n];

x[0][0] = 1;
x[0][1] = 2;
x[1][0] = 3;
x[1][1] = 4;

fp fptr = &f;

(*fptr)(n, x);
fptr(n, x);

return 0;
}

void f(int n, int x[n][n])
{

printf("0,0 = %d\n", x[0][0]);
printf("0,1 = %d\n", x[0][1]);
printf("1,0 = %d\n", x[1][0]);
printf("1,1 = %d\n", x[1][1]);

}

In this example a 2 x 2 VLA is created and then passed as an argument to a function.
The called function is declared before use, along with a function pointer typedef. Note
how the [*] notation is used to specify VLA parameters.

Pointer Arithmetic
In the first example above, we showed how sizeof() returns a dynamic value, known
only at run time. This same consideration also applies to other calculations, such as
pointer arithmetic. Consider the following example:

#include <stdio.h>
#include <stdlib.h>

int main(int argc, char* argv[])
{

if (argc!=2) {
fprintf(stderr, "Missing numeric argument\n");
return 1;

}
int n = atoi(argv[1]);
int arr[10][n];
int (*p)[n] = arr;
arr[4][n-1] = 37;

p += 4;

printf("%d\n", p[0][n-1]);

return 0;
}

The VLA arr becomes a 10 x n array, with n set at run time. We initialize a pointer to
the array, store a value at [4][n-1] in the array, and then increment the pointer by 4. In
this situation, saying p += 4 means that four rows of the array should be skipped, but
the length of a row (the number of columns) is not known to the compiler and must
be dynamically evaluated.

66

The variable p in this example uses what is known as a “variably modified type.” The
line

int (*p)[n] = arr;

declares p to be of variably modified type and then initializes it with arr. p is a pointer
to an array of n integers, and the initialization sets p to point at the VLA. [n] is part of
the variably modified type.

VLAs are a subset of variably modified types. Such types must be declared at block or
function prototype scope. So, in this example:

int n = 5;
//int (*p)[n];
void f()
{

int x[n][n];
int (*p)[n] = x;

}

uncommenting the global declaration will trigger a compile error.

Restrictions on Variable Length Arrays
There are some things you can’t do with VLAs. One of them is to use {} initializers, like
this:

void f(int n)
{

int x[n] = {1, 2, 3}; /* can't do this */
}

One problem with allowing this usage is that the value of n is not known to the com-
piler, so it’s impossible to determine whether too many initializer values have been
specified.

Another thing you can’t do is to allocate a VLA using global or static storage:

int n = 3;
int x[n];
void f()
{

static int y[n]; /* can't do this */
}

There’s no way at compile time to determine how big these arrays will be.

A third example concerns the use of sizeof, like this:

void f()
{

int n = 3;
int x[n];
int y = 5;

switch (y) {
case sizeof(n):

break;
case sizeof(x): /* can't do this */

break;

67October 2001 ;login: VARIABLE LENGTH ARRAYS ●

●

PR

O
G

RA
M

M
IN

G
| C

O
M

PU
TI

N
G

Vol. 26, No. 6 ;login:

}
}

The usage in the second case label is invalid because the size of x is not known to the
compiler.

Finally, it’s illegal to jump around the declaration of a variable length array:

void f()
{

int n = 3;
int y;
goto lab; /* can't jump around decl below */

int x[n];

lab:

y = x[0];
}

Static and Restrict
There’s another interesting aspect of VLAs that ties in with performance and optimiza-
tion. When you’re specifying variable array parameters to a function, you can use the
static and restrict keywords:

#include <stdio.h>

double f(int n, double x[static n])
{

double sum = 0.0;

for (int i = 0; i < n; i++)
sum += x[i];

return sum;
}

int main()
{

int n = 10;
double x[n];
for (int i = 0; i < n; i++)

x[i] = (double)(i + 1);

double sum = f(n, x);

printf("%g\n", sum);

return 0;
}

Using static tells the compiler that the underlying pointer used to hold the VLA argu-
ment (1) is not NULL, (2) points to elements of double type, and (3) points to at least
n elements which are guaranteed to be available.

This information can be used to initiate loads or prefetches of the arrays that are
accessed within the function. Another example uses both static and restrict:

#include <stdio.h>

68

void f(int n, double x[static restrict n],
double y[static restrict n])

{
for (int i = 0; i < n; i++)

x[i] += y[i];
}

int main()
{

int n = 10;
double x[n];
double y[n];
for (int i = 0; i < n; i++) {

x[i] = (double)(i + 1);
y[i] = (double)(i + 100);

}

f(n, x, y);

for (int i = 0; i < n; i++)
printf("%d %g\n", i, x[i]);

return 0;
}

In this example, the array parameters to f() are guaranteed to be (1) non-NULL, (2) of
type double, (3) at least of length n, and (4) unique and non-overlapping. Such infor-
mation can be used to generate optimized code.

Variable length arrays are especially useful in numerical programming, and also in sit-
uations where you don’t know the array size at compile time, and you don’t want to
deal with all the complications of dynamic allocation.

69October 2001 ;login: VARIABLE LENGTH ARRAYS ●

●

PR

O
G

RA
M

M
IN

G
| C

O
M

PU
TI

N
G

