-login:

inside:

CLUSTERS

MONITORING TOOLS FOR LARGER SITES

by Stephen Chan, Cary Whitney, Iwona
Sakreja, and Shane Canon

THE MAGAZINE OF USENIX & SAGE

August 2001 e Volume 26 ¢ Number 5

Special Focus

Issue:Clustering
Guest Editor: Joseph L. Kaiser

USENIX & SAGE

The Advanced Computing Systems Association &
The System Administrators Guild

monitoring tools for
larger sites

Introduction

One of the primary responsibilities of system administrators is to ensure that
systems are running and users don't experience any service interruptions. As
an environment becomes larger, with more services and more dependencies,
it becomes increasingly difficult to track the state of your site. For small sites,
or for sites with very specific requirements, administrators often create cus-
tom scripts or other monitoring tools to watch their environment and report
any problems. However, as sites become larger and more complex, or moni-
toring policies become more stringent, it makes sense to look for existing
tools and build upon them. So long as the tool is stable and well matched for
your environment, this is an efficient approach. With the proliferation of the
Internet and the burgeoning open source movement, there are more tools
than ever before to monitor your site. This article covers some of the most
popular, and discusses their design and operation. Tools exhibit the different
design decisions of their creators; administrators will have to decide for
themselves whether the design suits their requirements.

Our environment is a Linux cluster with roughly 180 servers, used for scientific com-
puting at the Lawrence Berkeley National Laboratory. While it is not as large as some
server farms, it is nonetheless large enough so that a monitoring tool not designed for
performance and scalability will begin to show its limitations. The server we use for
monitoring is a dual Pentium Pro 200Mhz (256K cache) with 64MB of memory. Not an
especially powerful machine, but it provides a good platform for testing the efficiency of
monitoring packages.

The intent of this article is to present a beginning overview of monitoring and describe
several packages that provide a good starting point for further investigation. For readers
who have some experience with monitoring, the later section that reviews several pack-
ages may be useful, in case you are trying to expand or upgrade your monitoring sys-
tem. We won’t be able to go into much depth in this article, but we hope to give readers
a useful comparison of the tools available.

What Is Monitoring?

There are two classes of monitoring tools that are covered in this article: event (fault)
monitoring and performance monitoring. Typically both are necessary in a production
site, but for this article, we will spend more time on event/fault monitoring. The event
monitoring tools we’ll discuss are Big Brother, Mon, Big Sister, and NetSaint. For perfor-
mance monitoring, we will focus on MRTG, one of the most popular packages available
for trending network performance. Inevitably, if we talk about MRTG, the topic of
SNMP comes up; however, SNMP is a very broad topic, and we cannot hope to do more
than provide a high-level overview in this article. It should be clear that we are only cov-
ering free, open source tools. There are numerous powerful (and expensive) commercial
packages available, but many of the free packages are very useful and more than ade-
quate for many sites.

Event monitoring is essentially watching out for certain interesting changes in the state
of your systems. Each such change is an “event.” Of course, the term “interesting” is
intentionally ambiguous: for most sysadmins, a server experiencing a kernel panic and
crashing is “interesting,” but something as seemingly benign as the utilization of a finite

MONITORING TOOLS

by Stephen Chan,

Chan PDSF lead. He has spent the last 10
years working either as a system engineer
of as a UNIX SA.

Cary Whitney,

Whitney has worked on PDSF at LBNL
since 1999, and has played a key role in
PDSF's past and ongoing development.

Iwona Sakreja,
Sakrejda started in PDSF User Services in
June 2000). Prior to that worked for ten

years at LBNL in the Nuclear Science Divi-
sion.

and Shane Canon

Canon is a system administrator at NERSC

where he heIPs administer a large linux
cluster used for computational computing.

sychan@Ibl.gov
clwhitney@Ibl.gov
isakrejda@lbl.gov
canon@nersc.gov

The Parallel Distributed Systems Facility (PDSF)
is a "Cluster of Clusters" managed by the
National Energy Research Scientific Computing
Center (NERSC) personnel under the auspices
of the High Energy and Nuclear Physics Com-
puting Support (HENPC) Group.

August 2001 ;login:

CLUSTERS

53

54

For system administrators,
often the three most
important metrics are
availability, utilization, and

throughput

resource going above a certain threshold may be interesting as well (even if nothing
crashes). This is why we use the term “event monitoring” instead of merely “fault moni-
toring.” Fault monitoring implies that something is broken, but we may be interested in
an event, even if nothing is broken (because the event may indicate that something
might break soon). Generally, if an interesting event occurs, we want some kind of
response to be triggered — it can be as simple as sending a message to a pager or as com-
plex as starting a script that performs diagnosis and possible recovery.

Performance monitoring involves tracking metrics related to how systems are perform-
ing. For system administrators, the three most important metrics are often availability,
utilization, and throughput. Availability is a measure of the percentage of time that a
system is up and available to users, while utilization measures what percentage of the
total capacity is in use (for example, what percentage of time a CPU is non-idle). A met-
ric related to utilization that is often used in network monitoring is throughput, or the
amount of activity per unit of time (for example, the number of megabits per second
flowing through a network switch port).

Performance and event monitoring can overlap because the underlying metrics being
gathered are often the same. For performance monitoring, these metrics are processed
to produce graphs or some kind of summary statistics. For event monitoring, changes in
the metrics, the inability to collect the metrics, or the inability to connect to a service (a
“service check”) are the events being monitored. As a simple example, if we try to con-
nect to a server and discover that it is not responding, to the event monitor, this event
may trigger a page to the person who is on call. To the performance monitor, the fact
that the server is down is a data point for calculation of overall availability.

An important protocol for both event and performance monitoring is SNMP, the Sim-
ple Network Management Protocol. SNMP is a UDP protocol based on the notion of
reading and setting variables that are tied to the state of devices on a network. By read-
ing the value of a variable via SNMP, you can discover information about the device. By
setting the value of a variable via SNMP, you can alter the state of the device. Network-
ing hardware typically has SNMP support built in, and SNMP is the main standard used
for remotely administering networking hardware. Computers and other devices on the
network typically support SNMP as well, but it often requires configuration.

On a computer, SNMP typically requires that an agent be installed and running. This
agent handles SNMP requests and can be configured to send SNMP event notifications
(SNMP traps) under some circumstances. An SNMP agent can be extremely useful for
gathering metrics and remotely administering machines. However, this utility comes
with the requirement to administer the agent; an unconfigured or poorly configured
SNMP agent is a security nightmare.

Most of the event monitoring tools discussed have their own custom agents. SNMP
agents are the de facto standard for performance monitoring, but they can also be used
for event monitoring. The choice of whether to use an SNMP agent or the custom agent
is up to the administrator. Event monitoring packages usually prefer to use their own
agents for gathering metrics, and their default configuration usually doesn’t support
SNMP agents. However, the security and robustness of these agents can be a big
unknown — while SNMP is a security hazard, it is at least an understood hazard. Typi-
cally, an SNMP agent is much more general than the custom monitoring agents, and
with the appropriate investment of time, it is more powerful and flexible.

Vol. 26, No. 5 ;login:

Event Monitoring Packages

There are four network monitoring packages that we will discuss: Big Brother, Big Sister,
Mon, and NetSaint. Each one is a free, open source package that can be found on the
Internet. For the most part, these packages are stable and can be used in a production
environment to do monitoring. All of these packages can be extended with plug-ins or,
if you are so inclined, by modifying the source code. In addition, they all have Web
interfaces — one package, Mon, has a command-line interface as well.

All of these packages will perform basic monitoring, such as pinging hosts or checking if
common services (HTTP, Telnet, etc.) are listening. All of the packages support moni-
toring using polling (“pulling” information from services being tested) and some of
them support pushing, in which clients send information to the central monitoring
package (“pushing” information from the clients being monitored).

Polling tends to concentrate all the work on the machine that is doing the polling. Con-
sequently, the polling machine can become bogged down. The benefit is that you have
only a single point of administration, simplifying management dramatically. With push-
ing, where clients send information to the monitoring host, more of the load is borne by
clients, but this can require more administration. It also means that an agent has to be
installed on each of the machines being monitored, and these machines must be able to
initiate connections to the monitoring host. This can be a problem if there are trust
issues — for example, if the monitoring host is inside a firewall, but the monitored host is
outside the firewall. You typically don’t want external hosts initiating connections
through the firewall. This is an issue that an administrator needs to consider very care-
fully in light of the security policies for his or her site.

All of the packages described support external plug-ins. These are custom written pro-
grams that monitor services that the basic monitoring package doesn’t support. For the
most part, the plug-ins are external scripts with well-defined exit values and output that
let the system know the state of the tested service. Writing a plug-in in C and then com-
piling to native code is generally fastest in terms of performance; however, coding some-
thing in Perl is usually the most convenient approach. Some of the packages have an
embedded Perl interpreter to speed up Perl-based monitors. This is an important con-
sideration if you have a lot to monitor and prefer to use Perl. It is also useful because
SNMP offers many monitoring possibilities that may not be supported in one of the
canned monitoring tools.

Plug-ins are also valuable for testing more complex applications. For end-to-end testing
of an application, it may be necessary to engage in an extended transaction (for exam-
ple, testing an e-commerce application on a Web server) by writing a custom client. This
is an important consideration for monitoring more complex sites.

BiG BROTHER

Big Brother is one of the most popular packages available. It is straightforward to install
and configure, and has a large user base that has produced numerous plug-ins for moni-
toring services. Big Brother is a combination of shell scripts and compiled C programs
that will gather information and generate reasonably photogenic Web pages that pro-
vide up-to-date status information. If something breaks, Big Brother has a highly con-
figurable policy-based notification system that supports email, pagers, and SMS.
Notifications can be acknowledged via the Web page or an email message.

Big Brother also has a script that generates availability statistics, which is nominally a
part of performance monitoring. With the base installation, you can monitor the fol-

August 2001 ;login: MONITORING TOOLS

CLUSTERS

55

56

(0 ee bo bt es oty) et et e izl

M 0 Eve Ppotm Teh ey -
i I B o e C R e B |

A Ty - 7] e
e l_|'l---'rlrmll'l-|r\.| '._I_:"r'r ﬂ_l‘l--'u l_|-I LT ﬂdll.l-p IJ__II""Ill-- *l_l Laeerr Higw .E!ﬂ"i *'J-e'l'"."'-' e TTEITIN

BB s ey sy e by e e

Wad May T 20:

i
Farwr
Ersarkoaed

wivmy b e
i] Al Ly e

Figure 1: Demo Screen from Big Brother

lowing services: FTP, SMTP, POP3, Telnet, SSH, NNTP, DNS, HTTP, HTTPS. Note that
monitoring of HT'TP and HTTPS requires the Lynx browser. Plug-ins, in the form of
external programs, are supported to monitor services that the base installation does not.
Big Brother can monitor most services you can think of, and if a service isn’t covered,
you can easily write a plug-in using their interface.

If an agent is installed on a machine, it will push information about running processes,
disk space, CPU utilization, and similar metrics to the Big Brother server. All this infor-
mation can be tied to notifications as well, so if an important process dies and doesn’t
respawn, Big Brother will let you know. Even though Big Brother collects this informa-
tion, it only stores enough to perform availability reporting and not utilization or
performance tracking.

Big Brother does not have SNMP support built in, but it can be extended to support
SNMP traps and SNMP polling via plug-ins.

Big Brother keeps its state information in a collection of text files. Since they are text
files, they are relatively easy to parse; however, text is not the most efficient format for
storing data, or for accessing data. If you keep historical data for a long period of time,
the disk space usage really starts to add up.

Big Brother also has support for redundant Big Brother installations and some support
for distributed monitoring. This is handy for remote sites and can also be used to scale
up the capacity of Big Brother.

Our experience is that Big Brother is excellent for smaller sites, but it is missing some
features necessary for monitoring larger sites. For larger sites, you need the ability to
control the rate at which tests are being executed; if you have 700 different services
being monitored, you don’t want to run all 700 at the same time. By the same token, you
would not want to run the tests one at a time, because the time to go through all 700
tests may far exceed the interval between tests. It is entirely possible that you will receive
error notifications, not because something is down, but because you cannot effectively

Vol. 26, No. 5 ;login:

Lisid wluiniae £l Whias 9 | 9 0] 96 2

AU P i
walew L S R P . T
sl /0K T
iy AR AT L
ot 8 I
ke o IR P
HOHA T easiin
kR Rl s v A A bR A R R Bl TR AEE SRl

ol AW -1

e e |

e i P T Hiem

il B pamitn

SR H RN Seralln

Femery

e i, g TR s el PR e B p Rl e pead T SRl TR
‘Uaran

i

T
e
LET T
T L]
WA

Darwrsany

wrire DT HOE

e Tre L

— E
i R 1 [0 v’ L1
i P L

e, L -

Figure 2: Demo Screen from Big Sister

perform all the tests within the allotted time. The portions of Big Brother that are in C
run very quickly; however, the portions in Bourne shell are lacking in performance. Our
experience is that Big Brother was not able to run all its tests quickly enough to avoid
false errors showing up. It may be possible to avoid this by using a distributed monitor-
ing approach; we chose to examine other tools, however, to see if they would work with-
out requiring more hardware.

Big Brother’s reporting tools are reasonable, but it would be better if the data that Big
Brother collected were in a database with a standard interface, so that reporting tools
could be leveraged to generate custom reports.

BIG SISTER

Big Sister is a clone of Big Brother. It is compatible with many of Big Brother’s plug-ins
and clients, and adds many new and useful features. One of the most basic differences is
that Big Sister is implemented in Perl and uses the round-robin database tool (rrdtool)
to store performance and utilization statistics for trending.

Big Sister’s user interface is structurally similar to Big Brother, and it has most of the
same features as described for Big Brother. Big Sister goes beyond Big Brother in the fol-
lowing areas:

Performance trending — Big Sister stores performance data in a database and generates
graphs to describe performance and utilization. The database back end, rrdtool, is the
same tool used for many network performance monitors and has C, Perl, and com-
mand-line interfaces for gathering information and generating graphs. If you need this
feature, the rrdtool approach has benefits that will be discussed later.

SNMP support — Big Sister can use SNMP agents to gather statistics. However, it appears
that SNMP information may not be used for trending. Big Brother supports SNMP as
well, via plug-ins, so it is less well integrated.

August 2001 ;login: MONITORING TOOLS

CLUSTERS

57

58

Syslog parsing — Big Sister will examine the syslog file for errors or other lines matching
configurable regular expressions. This is especially handy if you have a centralized
loghost.

Tripwire — Tripwire is used to verify file permissions and checksums on important sys-
tem files for security auditing. This can save you some time if security is a major con-
cern.

Additional monitors — Big Sister has several other monitors built in, which are often cov-
ered by Big Brother plug-ins. For reference purposes, the additional monitors include:
Oracle, RPC, SAR-based metrics, RADIUS, OpenView trap monitor. In addition, Big
Sister comes with support for SNMP traps — event notifications that devices send over
SNMP (instead of being polled, a device pushes an event to the server). The benefit of a
built-in monitor is that they often have much better integration with the core package
and can present information in more detail and many of the built-in Big Sister monitors
provide a good level of detailed information.

Big Sister also uses rrdtool for storing and graphing performance metrics. rrdtool will be
discussed more in the performance monitoring section; suffice it to say that this adds a
lot of flexibility and power with respect to gathering and displaying metrics.

Generally speaking, Big Sister has more monitors in the base installation and better
tools for reporting, especially generating graphical reports.

Big Sister does not really add any new functionality when it comes to support for larger
sites. The fact that Big Sister is written in Perl is both a boon and a bane. Perl is excellent
in terms of modifying and extending the software; however, Big Sister is relatively com-
plex for a Perl script. Perl’s garbage collector makes it easy to write code, but the refer-
ence-counting implementation tends to be “leaky” on long-running scripts that use lots
of objects. In our tests, we found that the resident set size of the Big Sister application
could get to 20MB within a few days. This was only aggravated by the fact that we had
many machines and many services being monitored. This is not a criticism of Big Sister,
but of the limitations of Perl for complex, long-running programs (especially if there
are lots of anonymous objects being created, as typically occurs when using the OO
extensions). If Big Sister were re-implemented in the latest version of Python, which has
an improved garbage collector, or Ruby, with its Mark&Sweep garbage collector, this
problem might be avoided. This problem can also be worked around with a nightly
restart of the offending Perl scripts.

As memory usage goes up, performance on the monitoring host often starts to degrade.
It appeared that Big Sister did not parallelize its tests. Combined with the slowdown
from memory usage, it became impossible to complete all the monitors within the
scheduled amount of time (15 minutes between tests), resulting in many systems
appearing to go down and then coming back up a few minutes later.

Because of the lack of support for larger sites, and the problem we saw with core leaks,
Big Sister, despite it’s many attractive features, does not seem to be appropriate for a
larger site.

MonN

Mon is a set of Perl scripts that, in terms of functionality, is one of the more basic tools
covered. However, one of Mon’s more interesting facets is that it has multiple interfaces
into the system — supporting command-line, Web, and even two-way-pager interfaces.
Mon is implemented in Perl, but apparently because the package does not implement all

Vol. 26, No. 5 ;login:

the monitoring and trending features of Big Sister, it doesn’t seem to suffer from the
same garbage collection problems.

Mon can be described as a minimalist scheduling and notification framework for moni-
tor programs. It schedules tests to be run and, based on the results, may send out notifi-
cations. It has a server that clients can connect to in order to query and update the state
of the system, which then implements a Web, command-line, or other interface to the
end user.

The following monitors are provided: asyncreboot (monitor host reboots via SNMP),
dialin, DNS, fping, FreeSpace, FTP, hpnp, IMAP, LDAP, MySQL, netapp quota/FreeSpace,
NNTP, ping, POP3, monitor processes via SNMP, rd (notifies if too many or too few files
are in a directory), RPC, SMTP, TCP, Telnet, and network round-trip times. Like Big Sis-
ter, Mon supports SNMP traps.

Mon also has event handlers — which are programs or scripts that should be run when
certain events are detected. For example, you could configure Mon to run a utility to
restart a Web server on a remote machine if it notices that the server has gone down.
This is a very useful feature for problems that are well understood and can be automati-
cally resolved.

Mon doesn’t have its own agents, preferring to leverage SNMP for many of these func-
tions. In general, Mon is a straightforward monitoring tool. It does not provide a large
feature list, but it is dependable, has a low administration overhead, and allows many
forms of interaction. Its configuration is very clean and easy to read, more so than the
other packages we examined. The Web interface also has useful controls for stopping
and restarting the Mon server process. In terms of it’s core monitoring and notification
functionality, it is on par with most of the tools described, but it does not have a snappy
Web interface, trending, or availability reports.

For large sites, Mon’s scheduler has a useful feature: it can put a limit on how many tests
are being run at any given time. We actually ran Mon for quite some time and it did a

s
M me e e b [|
ki o O3 D e s Cea o]

N e e — Y =]
i o [et e T [e 0 [(T vt S §[PUF o i e B0
B I}prnltinn Hitnius
m ! :?EI-
- | ST Y ! Rt
e i rai i for
e Frim - Hyvin ror i
i
[1} I - I'I | dis I T : I.ﬂ'l II||l‘|
Thact . i i 1 4 J
Harl Lo fertimr Lail Dleiind Nat. B Dk
L L
&l o

Figure 3: Demo Screen from Mon

August 2001 ;login: MONITORING TOOLS

CLUSTERS

59

60

good job of watching the site without bogging down. If you need a basic level of moni-
toring that is dependable and straightforward to configure, but with very little report-
ing, Mon is a solid performer.

NETSAINT HTTP://NETSAINT.SOURCEFORGE.NET/

NetSaint is a monitoring package that seems to have been designed for speed and scala-
bility. The package is written in C, and virtually all of the monitors are coded in C as
well. For folks who prefer Perl, the latest version includes an embedded Perl interpreter
to eliminate the overhead of forking and execing a new Perl interpreter. The package
also has one of the more visually appealing Web interfaces of the four we’ve examined.
It should be stated that NetSaint is the package we are most familiar with because it
seemed to fit our requirements well, and, as a result, we’ve invested more time in explor-
ing it.

NetSaint has many useful features for supporting larger
sites. It parallelizes service checks and provides directives
for controlling the maximum number of service checks,
as well as a method of interleaving the service checks so
that checks are spread out uniformly. With these features
proPerly enabled, NetSaint was able to easily complete
700 total service checks against ~180 hosts with

extremely low load on the monitoring host (usually 90%
idle).

Another feature that NetSaint supports is passive service
checks. This allows service checks to be performed else-
where and then sent to a NetSaint server for tracking
and notifications. This distributes the load across multi-
ple machines and can be very useful for large sites or for
monitoring remote sites.

NetSaint also has many other useful features including
exposing the number of and interval between retries
before sending out an error notification. It will often be
the case that there is a transient problem that causes a

Figure 4: Demo NetSaint Screen test to fail or time out. Under these circumstances, you

would prefer that the monitoring package briefly wait
before retrying the test to avoid a false alarm. In many packages you can modify the
script or program that does the checking, but in NetSaint, it is parameterized in the
configuration file. This was very handy in cutting down on false alarms against our
more heavily loaded NFS servers.

NetSaint also generates reasonable availability summaries and trending graphs. How-
ever, NetSaint doesn’t do any performance or utilization trending. It does, however, have
an interface that allows performance data from tests to be passed to external trending
packages.

NetSaint also has a very handy feature: when using the Web interface, it is possible to
put notes on machines or add notes to services that have been marked as “down.” This is
an excellent feature for communicating between UNIX system administrators, opera-
tors, and even end users. It is also a good way to keep a history of problems with
machines.

Vol. 26, No. 5 ;login:

HTTP://NETSAINT.SOURCEFORGE.NET/

If there is a place where NetSaint is less convenient, it is with the configuration files. The
files allow you to have very fine control over the machines being monitored; however, it
is not possible to apply a directive to a group of hosts at one time. For example, if you
have 180 hosts that you want to monitor for SSHD, you need to enter 180 lines telling
NetSaint to do so. The file is also designed for machine parsing, not human parsing, and
can be a little hard to read. But you can get around tedious and error-prone configura-
tion file editing with some scripting. An enterprising user came up with a tool that uses
NMAP to discover all the services and then output a configuration file of all the hosts
and services listed. This is clever and a big time saver, but it isn’t a substitute for more
expressive configuration file directives. NetSaint would benefit from looking at Mon’s
approach to configuration.

NetSaint has possibly the best default Web interface, with several very useful views, and
a good amount of optional information that can be added. However, it doesn’t allow the
degree of customization over appearance that many of the other packages provide.

Performance Monitoring Tools

Performance monitoring is an important topic, so we cover it in order to complete the
picture of monitoring, and also to contrast it against event monitoring. Due to the short
length of this article, we can only touch on the subject briefly, by discussing the motiva-
tion for performance monitoring, typical functionality, and one of the most common
free packages, MRTG.

Monitoring the utilization and other performance metrics on your systems is important
for capacity planning and load balancing. It can help you identify bottlenecks in overall
site performance, understand usage patterns, and predict when extra capacity will be
required. In contrast to event monitoring, which is typically concerned with a sudden
state change, performance monitoring is concerned with describing long-term trends,
or providing statistical summaries of system state. The availability statistics that many
event-monitoring packages provide is an example of a performance metric and also
highlights the relationship between event monitoring and performance monitoring.
Many performance-monitoring packages can also be configured to trigger an action if
some metric falls below a certain level. For example, a package that is tracking the
amount of swap space can generate an alarm if free swap falls below a certain value.
This tight relationship between event and performance monitoring is why they are both
covered in this article.

MRTG, MULTIROUTER TRAFFIC GRAPHER

MRTG is an SNMP-based package, originally designed for monitoring network usage
on switches and routers. MRTG is a very popular tool, and many sites may already be
using it to watch their network usage. MRTG generates a series of graphs that chart the
input and output utilization of ports on switches and routers. This is the most common
use of MRTG. However, MRTG has three features that make it especially interesting as a
complement to event monitoring: external data sources, rrdtool support, and threshold
triggers.

EXTERNAL DATA SOURCES

MRTG can be configured to collect and graph arbitrary pairs of variables served over
SNMP. The following URL describes how to monitor server-based metrics over SNMP
with MRTG: http://net-snmp.sourceforge.net/tutorial/mrtg/index.html.

August 2001 ;login: MONITORING TOOLS

CLUSTERS

61

http://net-snmp.sourceforge.net/tutorial/mrtg/index.html

62

PR e
e

i P ettt [Ter f[Fvies il e RS e S (PUF o i e BTN

MHETG Index Page

IRERI N] — - it |l

8) S S

crahdld

INLRINL]

e aw e ih o b

However, sometimes information that you’d like to have
is not available fromSNMP. The following URL has links
to many such applications:
http://people.ee.ethz.ch/~oetiker/Webtools/mrtg/links.html.

- 2 R ———= | An example from our site is information from our batch

L]
] Lo

scheduling system about the number of servers currently
being used to process batch jobs. Another useful metric is
the total number of servers that are available The avail-
ability metrics that event-monitoring systems provide
usually only measure the availability of individual
machines or services, not the availability of the entire
cluster. A useful metric would be what percentage of the
total site is up at a given time and summary statistics of
long-term availability. These can be easily fed into MRTG

and graphed using the external data source features.

Figure 5: Demo MRTG Screen

An issue with external data sources is that they are polled
at the same time that MRTG runs its normal SNMP probes, which may or may not be
the appropriate polling interval. The next feature we discuss provides a way around this
issue.

RRDTOOL SUPPORT

MRTG keeps an internal database of the metrics it has gathered. What rrdtool does is to
break out the functionality of this database into a separate tool called the round-robin
database tool. This tool keeps a sliding window of the most information gathered — for
example, it will only keep the most recent 1000 datapoints, no matter how many you
may have actually collected. rrdtool allows you to perform calculations and generate
graphs on the data and any calculations you may have made. rrdtool is actually the data-
base back end for the next generation of MRTG; however, recent versions of MRTG can
be configured to use rrdtool for its back end.

Because you can insert data into rrdtool independent of MRTG, rrdtool allows much
better control over data collection and increases your control over the graphs being gen-
erated. MRTG is designed to graph two variables against each other on its graph — this is
not always the kind of graph that you are interested in — sometimes you are only inter-
ested in a single value being graphed, or you may want multiple values graphed simulta-
neously. Another issue is that the sampling interval for MRTG may not be the
appropriate sampling interval for other services — MRTG performs all the metrics gath-
ering at the same rate. This is especially important if the process of gathering the met-
rics is expensive or time-consuming: it may be reasonable to gather information about
all the ports on a single switch every five minutes, but trying to gather CPU utilization
across 180 servers over SNMP every five minutes can be more trouble than it is worth.

If you are willing to invest some time, rrdtool solves both these problems. rrdtool can
store arbitrary time series data, and gives many options for creating graphs. As an exam-
ple, the following image is a graph of processor utilization across our server farm. The
source data comes from our batch scheduler (LSF), the data and stored in rrdtool, and a
cron job runs rrdtool every 15 minutes to generate an up-to-date graph.

Another advantage of using rrdtool is that it can easily serve as a bridge to the event
monitoring package — the event monitoring package can sample the most recently gath-
ered statistics and generate an alarm if something is out of the expected range of values.

Vol. 26, No. 5 ;login:

http://people.ee.ethz.ch/~oetiker/Webtools/mrtg/links.html

THRESHOLD TRIGGERS Clastr (0 VL Tization Tor 28 beirs me 5 ASZLAT] T7:0000)

MRTG can also be configured to generate alarms if certain metrics go outside an
acceptable range. In this capacity, MRTG operates as a fault/event monitor and is a
useful adjunct to the main event monitor. Threshold triggers and rrdtool to interface
with the event monitor are both effective for tying the event monitoring and
performance monitoring systems together.

Conclusion
Monitoring is a key aspect of system administration, especially for sites that have AL

“"‘-. - hx
\-bll""ﬁ-\.lh Ww_

et ¥ it

ol B e AT AR 1

24x7 requirements. Even for sites without such requirements, administrators may
be better off having their monitoring package inform them that something is wrong
with their systems before a user does. The packages described cover a good range of
monitoring requirements, and if used well, should allow an administrator to know what
is happening on their site in excruciating detail.

At the minimum, these tools provide an administrator with clear metrics about the
performance of their site. Ideally, these tools can clarify broader policies and provide
insight into capacity planning and resource utilization.

August 2001 ;login: MONITORING TOOLS

Figure 6: Sa;r'iﬁe rrdtool Output

CLUSTERS

63

