
THE MAGAZINE OF USENIX & SAGE
August 2001 • Volume 26 • Number 5

inside:
CLUSTERS

LINUX CLUSTERING FOR HIGH-
PERFORMANCE COMPUTING

by Ian Lumb

The Advanced Computing Systems Association &

The System Administrators Guild

&

Special Focus
Issue:Clustering
Guest Editor: Joseph L. Kaiser

79August 2001 ;login: LINUX CLUSTERING ●

by Ian Lumb

Ian Lumb is an inte-
gration architect at
Platform Computing
Inc. His interests
include computing
architectures, parallel
computation and
high availability.

ilumb@platform.com

ACKNOWLEDGEMENTS
Through numerous discussions, the author’s
colleagues Bill McMillan and Chris Smith have
indirectly contributed to this article.

Linux clustering for
high-performance
computing
Introduction
Traditionally, high-performance computing (HPC) has involved the use of

monolithic mainframe, supercomputer, or symmetric multiprocessor (SMP)

systems to solve the Grand Challenge problems of the physical sciences and

mathematics. Classic HPC, however, has experienced a significant evolution

on two fronts. First, it has been infused with interest from extra-classic disci-

plines ranging from high-tech and industrial engineering, to digital content

creation and the life sciences. Second, the availability of commodity proces-

sors, in combination with low-latency, high-bandwidth interconnect tech-

nologies, has catalyzed the appearance of computing architectures based on

clustering paradigms. Linux clustering through distributed operating systems,

middleware, and hybrids thereof, represents the current focus.

Distributed Operating Systems
Clustering through distributed operating systems (D-OSes) is not “new.” However, it has
been Linux-based clustering solutions that have facilitated the commoditization of HPC
in nontraditional disciplines. Although MOSIX (http://www.mosix.org/ and http://
www.mosix.com/) is notable in its own right as a D-OS, the current illustration of clus-
tering via a D-OS in the Linux context is provided here via Beowulf clustering
(http://www.beowulf.org/).

In 1994, Thomas Sterling and Donald Becker of CESDIS1 created the first Beowulf clus-
ter out of 16 Intel 486-generation systems interconnected via channel-bonded Ethernet.
An instant success at the time, Beowulf clustering has reached beyond academic circles
in its ability to generate attention and has become an acknowledged genre in HPC.

Beowulf clusters consist of:

■ Commodity off-the-shelf (COTS) hardware
■ LAN interconnect technology
■ GNU/Linux operating system
■ System software
■ Programming environments

Arguably, the enabling aspect of Beowulf clustering derives from the system software
that allows interconnected COTS-class hardware, each running its own instance of
GNU/Linux, to function as a parallel compute engine.

Although individual GNU/Linux kernel instances abstract process manipulation
through the notion of a process identifier (PID), no such abstraction exists for the case
in which a parent process has forked child processes that execute on physically distinct
systems, each running their own instance of the GNU/Linux kernel. Generally speaking,
there is no concept of a “global PID” for clustered Linux systems. To address this short-
coming, the Beowulf system software incorporates a kernel modification to provide a
distributed process space (BProc) which allows:

■ PIDs to span multiple physical systems – each running its own instance of
GNU/Linux

●

C

LU
ST

ER
S

http://www.mosix.org/
http://
http://www.beowulf.org/

■ Processes to be launched on multiple physical systems – each running its own
instance of GNU/Linux

The development of this distributed process space marks a significant infrastructure
advancement in the provisioning of a clustered Linux environment for parallel compu-
tation.

Ultimately, the hardware, interconnect technology, operating system, and system soft-
ware collectively provide an infrastructure for scientists and engineers to develop and
execute applications which exploit the distributed-memory parallel computation para-
digm. Both the parallel virtual machine (PVM, http://www.epm.ornl.gov/pvm/) and the
message-passing interface (MPI, http://www.mpi-forum.org/) approaches to parallel
computation are supported within the Beowulf framework. In addition, various GNU
compilers and tools (e.g., editors, debuggers, profilers, etc.) provide a fairly complete
development environment.

First-generation Beowulf clusters generated interest for a variety of reasons:

■ They demonstrated that a substantial parallel computation infrastructure could be
built from readily available, and inexpensive, hardware and software components.

■ They leveraged key, existing open source software in the GNU/Linux operating sys-
tem, plus the programming environments offered by PVM and MPI in tandem
with the GNU compilers and tools.

■ They demonstrated that a distributed-memory parallel computation approach
could rival, and in some cases surpass, the performance characteristics of “more
traditional” serial or shared-memory programming paradigms.

In short, Beowulf clustering placed distributed-memory parallel computation in the
public domain by making it simultaneously accessible and realizable.

Touted as the next-generation solution, the Scyld Beowulf clustering distribution
(http://www.scyld.com) offers the following enhancements over its progenitor:

■ Installation and administration improvements
■ Efficient, single-point distributed process management
■ Various 64-bit capabilities
■ BProc-aware MPICH
■ MPI-enabled linear algebra libraries and Beowulf application examples.

The second-generation Beowulf clustering solution provides a number of significant
enhancements beyond what was available in the first-generation Beowulf clustering
solution. Save for the BProc system software, a comprehensive framework to effectively
manage resources that are distributed over a network remained absent. This significant
shortfall is identified by D. F. Savarese and T. Sterling2 as The Software Barrier:

The earliest Beowulf-class systems were employed as single-user systems dedicated to
one application at a time, usually in a scientific/engineering computing environment.
But the future of Beowulf will be severely limited if it is constrained to this tiny
niche.

The need to enhance Beowulf systems usability while incorporating more compli-
cated node structures will call for a new generation of software technology to manage
Beowulf resources and facilitate systems programming.

They articulate the software barrier even more precisely in distributed resource manage-
ment terms in the following:

80 Vol. 26, No. 5 ;login:

Beowulf clustering placed

distributed-memory parallel

computation in the public

domain by making it

simultaneously accessible and

realizable

http://www.epm.ornl.gov/pvm/
http://www.mpi-forum.org/
http://www.scyld.com

Adequate system management may depend on the virtualization of all its resources.
This will separate the user application processes from the physical nodes upon which
the tasks are executed. The result is a system that dynamically adapts to workload
demand, and applications that can perform on a wide range of system configurations
trading time for space. Therefore, a new class of workload scheduler will be required,
developed, and incorporated in most Beowulf systems. It will support multiple jobs
simultaneously, allocating resources on a to-be-defined priority basis. It will also dis-
tribute the parallel tasks of a given job across the allocated resources for performance
through parallel execution. Such schedulers are not widely available on Beowulfs now
and will be essential in the future. They will incorporate advanced checkpoint and
restarting capabilities for greater reliability and job swapping in the presence of
higher priority workloads. Compilers to use the more complicated structures of the
SMP nodes will be required as well to exploit thread level parallelism across the local
shared memory processors. The software used on these systems will have to be gener-
ally available and achieve the status of de facto standard for portability of codes
among Beowulf-class systems.

In addition to resource-management opportunities, there exists a tight dependency
between BProc and the Linux kernel; even in the case of routine upgrades and/or patch
application, this dependency needs to be considered, and implies system downtime. The
architecture of BProc itself has caused scalability concerns3 and introduced challenges
in porting parallel debugging tools due to global-local PID mapping issues. As a Linux
kernel modification, BProc is necessarily covered by the GPL. While this provides all the
benefits that the open source approach has to offer, it makes it challenging for commer-
cial Independent Software Vendors (ISVs, e.g., Scyld), Linux distribution providers and
integrators, and traditional-UNIX system vendors to simultaneously add value and
retain a differentiating edge.

Middleware
Middleware can also be used to deliver clustering solutions. In striking contrast to
D-OSes, clustering via middleware does not require modifications to the Linux kernel.
Instead, such middleware fundamentally provides some form of distributed process
abstraction, including primitives for process creation and process control. Broadening
the discussion beyond this point, and providing a clearer distinction from distributed-
memory programming paradigms (e.g., MPI, PVM), is best presented through the
framework of distributed resource management (DRM).

DRM is a class of middleware that facilitates the management of heterogeneous com-
pute resources distributed over a network. DRM directly addresses the tension between
supply and demand by matching an application’s resource requirements with the com-
pute resources capable of filling the need. By effectively arbitrating the supply-demand
budget over an enterprise-scale IT infrastructure, subject to policy-driven objectives,
DRM solutions allow organizations to derive maximal utilization from all available
compute resources.

In general, DRM solutions make use of dynamic-load-state data to assist in making
effective, policy-based scheduling decisions, and in applying utilization rules to hosts,
users, jobs, queues, etc., all in real time. This dynamic-load-state capability has signifi-
cant implications in distributed-memory parallel computing, since task-placement
advice (i.e., which hosts are best suited for computational use) can be provided directly
to the MPI application (on launching).

81August 2001 ;login:

In striking contrast to D-OSes,

clustering via middleware

does not require modifications

to the Linux kernel

LINUX CLUSTERING ●

●

C

LU
ST

ER
S

As indicated previously, a remote-execution service is required to allow computational
tasks to be communicated over a network. Although the standard remote-shell infra-
structure (i.e., rsh-rshd-rexec) offers some possibilities, a more comprehensive service is
required to enable:

■ Authenticated communications over a network
■ A high degree of transparency in maintaining the user’s execution environment
■ Task control with respect to limits, signal passing, etc.
■ An environment for the task to execute in on the remote server

Although DRM solutions do not need to provide a distributed-process space, task-
tracking mechanisms are required. Thus application-task identifiers act as a handle to
the individual (parent and child) processes that collectively constitute a distributed
application. In addition to providing a unique identifier for application control, such
cluster-wide identifiers can be used in monitoring, manipulating, reporting, and
accounting contexts.

Through the introduction of elements, the task identifier can be further generalized to
the level of a one-dimensional array. This abstraction allows the same executable to be
run with different inputs, while being referencable as a unit. In some circles, this
approach is referred to as parametric processing.

DRM solutions typically employ a policy center to manage all resources, e.g., jobs, hosts,
users, queues, external events, etc. Through the use of a scheduler, and subject to prede-
fined policies, demands for resources are mapped against the supply for the same in
order to facilitate specific activities.

The extension of DRM solutions to support the programming, testing, and execution of
parallel applications in production environments requires:

■ Complete control of the distributed processes making up a job in order to ensure
that no processes will become un-managed. This effectively reduces the possibility
of one parallel job causing severe disruption to an organization’s entire compute
infrastructure.

■ Vendor-neutral and vendor-specific MPI interfaces
■ The ability to leverage a policy-driven DRM infrastructure that is cognizant of

dynamic load state

Challenges specific to the management of MPI parallel applications include the need to:

■ Maintain the communication connection map
■ Monitor and forward control signals
■ Receive requests to add, delete, start, and connect tasks
■ Monitor resource usage while the user application is running
■ Enforce task-level resource limits
■ Collect resource usage information and exit status upon termination
■ Handle standard I/O

To illustrate the value of parallel-application management for developers of MPI appli-
cations, consider the following example of fault tolerance. It is beyond the present scope
of the MPI, and indeed PVM, to take into account transient situations (e.g., a host that
exhibits a kernel panic and crashes) that inevitably occur while an application is in the
execution phase.4 Such situations will affect some of the processes involved in the exe-
cution of the MPI-based application. If the application does not include some mecha-
nism to address such situations, it is possible for the remainder of the application to run

82 Vol. 26, No. 5 ;login:

A remote-execution service is

required to allow

computational tasks to be

communicated over a

network

to completion and deliver incomplete and (potentially) meaningless results; the effect of
this situation is compounded when attempts are made to interpret the results. Although
DRM solutions cannot enable fault tolerance in MPI-based applications to the degree
that resynchronizations and reconnections are made possible, such middleware can trap
and propagate signals, thus affording a significantly improved degree of management
during execution – all without the need for additional coding (beyond exception han-
dlers) by the MPI application developer.

As described in this section on clustering via middleware, Platform Computing’s Load
Sharing Facility (LSF, http://www.platform.com) is the only provider of a comprehensive
DRM solution. Components of the DRM solution are provided by Sun’s GridEngine
(http://www.sun.com/software/gridware/) and Veridian’s Portable Batch System (PBSPro,
http://www.pbspro.com/); an open source version of the Portable Batch System (PBS)
also exists (http://www.openpbs.org). TurboLinux’s EnFuzion
(http://www.turbolinux.com/products/enf/) offers a parametric processing solution.

Hybrid Solutions
Clustering via distributed operating systems or middleware shouldn’t be taken to imply
strict exclusivity. In fact, examples exist in which hybrid approaches have been
employed. In one such case, Platform’s LSF leverages SGI Array Services
(http://www.sgi.com/software/array/) and SGI’s implementation of the MPI, respectively,
for distributed-process-space management and vendor-MPI leverage in the case of par-
allel computing. With the tremendous interest in Linux clustering solutions from both
the open source and commercial ISV, integrator, and system-vendor communities, it is
expected that such hybrids will continue to appear.

Summary
In addition to their price-performance appeal, clustering solutions can rival the
throughput capacity and capabilities of legacy mainframes, supercomputers, and high-
processor-count SMPs. The recent creation of a Top 500 list dedicated to cluster com-
puting (http://clusters.top500.org/) can be regarded as one indication of the viability of
this approach to high-performance computing. Both distributed operating systems and
middleware have proven capable of delivering Linux clustering solutions; hybrid solu-
tions have also been identified as likely to be of increasing value and prevalence in the
not-too-distant future. The choice of approach will ultimately need to take into consid-
eration a multiplicity of factors – e.g., total cost of ownership, importance of the service
(which distinguishes needs from the interests of the hobbyist to the data center), desired
characteristics of the service, etc.

As numerous activities serve to enhance the capabilities of the Linux kernel, and power-
ful 64-bit processors like API NetWorks Alpha (http://www.apinetworks.com) and Intel’s
Itanium (http://www.intel.com/itanium/) are increasingly commodified, the possibilities
for clustering solutions increase significantly.

Federating geographically distributed clusters to aggregate resources, or providing access
to specialized resources remotely, has been brought into focus in recent times through
the notion of the Grid.5 Much like the ubiquitous, highly available electrical power grid,
the global computing grid allows challenging problems in HPC to be addressed. Various
academic research (e.g., the Globus Project, http://www.globus.org, and the Legion Pro-
ject, http://www.cs.virginia.edu/~legion/) and commercial (e.g., Applied Meta,
http://www.appliedmeta.com/, and Platform’s LSF MultiCluster,
http://www.platform.com) ventures are already realizing the Grid. Because meta-com-

83August 2001 ;login:

In addition to their price-

performance appeal,

clustering solutions can rival

the throughput capacity and

capabilities of legacy

mainframes, supercomputers,

and high-processor-count

SMPs

LINUX CLUSTERING ●

●

C

LU
ST

ER
S

http://www.platform.com
http://www.sun.com/software/gridware/
http://www.pbspro.com/
http://www.openpbs.org
http://www.turbolinux.com/products/enf/
http://www.sgi.com/software/array/
http://clusters.top500.org/
http://www.apinetworks.com
http://www.intel.com/itanium/
http://www.globus.org
http://www.cs.virginia.edu/~legion/
http://www.appliedmeta.com/
http://www.platform.com

puting necessitates increased collaboration between all stakeholders, standardization
efforts such as the Global Grid Forum (http://www.gridforum.org) and the New Produc-
tivity Initiative (http://www.newproductivity.org/) are expected to be of increasing
importance.

Note Added In Proof
Since this article was originally written, the author has been apprised of the following
matters noteworthy of communication:

Although Scyld has recently released a significant update of its own Beowulf clustering
solution (http://www.scyld.com/page/products), and in addition to MOSIX, newcomers
SCore (http://pdsw3.trc.rwcp.or.jp) and CPLANT (http://www.cs.sandia.gov/cplant) also
merit serious consideration for clustering via distributed operating systems.

The Two-Kernel Monte (http://www.scyld.com/products/beowulf/software/monte.html),
or the use of diskless compute nodes, can serve to reduce the strong kernel interdepend-
ency noted in the case of clustering via distributed operating systems.

GridEngine is to join OpenPBS as an Open Source middleware contribution from Sun
Microsystems, Inc.

The New Productivity Initiative has recently released for public comment a draft of its
API for distributed resource management
(http://www.newproductivity.org./pdf/RefModel-V1.pdf).

Under the auspices of the Department of Defense (DoD, United States), the High
Performance Computing Modernization Project (HPCMP) has recently realized a sig-
nificant production computing grid implementation
(http://www.platform.com/solutions/whitepapers). Nine of the DoD HPCMP’s twenty-
one distributed compute facilities are involved in a Phase I implementation that is
aimed broadly at improving the organization’s overall use of compute capacity, and
enhancing their ability for compute capability. This project utilizes a number of DRM
technologies from Platform Computing Inc..

The joint agreement between Compaq Computer Corporation and Intel Corporation
(http://www.compaq.com/newsroom/pr/2001/pr2001062501.html) promises to infuse the
Itanium processor family with the proven HPC capabilities of the Alpha processor. This
fusion of commodity and technology should eventually invigorate the possibilities for
Linux clustering in HPC.

84 Vol. 26, No. 5 ;login:

NOTES
1. The Center of Excellence in Space Data and
Information Sciences (CESDIS) is a division of
the University Space Research Association
(USRA), located at the Goddard Space Flight
Center in Greenbelt, Maryland. CESDIS is a
NASA contractor, supported in part by the Earth
and Space Sciences (ESS) project. The ESS proj-
ect is a research project within the High Perfor-
mance Computing and Communications
(HPCC) program.

2. D.F. Savarese, T. Sterling, “Beowulf,” in R.
Buyya, ed., High Performance Cluster Computing,
vol. 1, 1999, pp. 625–645.

3. D.H.M. Spector, Building Linux Clusters
(O’Reilly & Associates, Sebastopol, CA, 2000).

4. K. Dowd, C.R. Severance, High Performance
Computing, 2nd ed. (O’Reilly & Associates,
Sebastopol, CA, 1998).

5. I. Foster, C. Kesselman, eds., The Grid: Blue-
print for a New Computing Infrastructure
(Morgan Kauffman Publishers, 1999).

http://www.gridforum.org
http://www.newproductivity.org/
http://www.scyld.com/page/products
http://pdsw3.trc.rwcp.or.jp
http://www.cs.sandia.gov/cplant
http://www.scyld.com/products/beowulf/software/monte.html
http://www.newproductivity.org./pdf/RefModel-V1.pdf
http://www.platform.com/solutions/whitepapers
http://www.compaq.com/newsroom/pr/2001/pr2001062501.html

