
THE MAGAZINE OF USENIX & SAGE
June 2001 • Volume 26 • Number 3

{

#
inside:
PROGRAMMING

Intrusion Detection

by Clif Flynt

The Advanced Computing Systems Association &

The System Administrators Guild

&

47June 2001 ;login: INTRUSION DETECTION ●

intrusion detection
The philosophy that drove the design of most of the UNIX system data files is

that it’s best to sacrifice a little speed in favor of ease of maintenance. Thus,

most data files (/etc/password, /etc/hosts, etc.) contain printable ASCII data. If

you need to examine them you can do it with more, and if you need to repair

them, you can do it with vi.

There are some files that contain binary data: the utmp file, for example. The utmp file
contains data about all the users on a system (assuming everything is working cor-
rectly), including their login id, the time they logged in, the IP address they logged in
from, etc.

It might be nice to watch this file and report when it changes. For example, if there is
suddenly someone running as root on our firewall, it might be something we are inter-
ested in knowing about.

Early versions of Tcl supported only ASCII strings, and could not handle binary data.
With version 8.0, Tcl moved to a more versatile internal data representation and added
the binary command. The binary command allows easy conversion from binary repre-
sentations to printable ASCII representations of data. Tcl is still oriented around print-
able ASCII strings, but the binary command makes it possible to handle binary data as
well.

The binary command has two subcommands, binary scan and binary format.

The syntax for these is:

Syntax: binary format formatString arg1 ?arg2? ... ?argn?

binary format Returns a binary string created by converting one or more printable
ASCII strings to a binary format.

formatString A string that describes the format of the ASCII data.

arg* The printable ASCII to convert.

Syntax: binary scan binaryString formatString arg1 ?varName1? ... ?varNamen?

binary scan Converts a binary string to one or more printable ASCII strings

binaryString The binary data.

formatString A string that describes the format of the ASCII data.

varName* Names of variables to accept the printable representation of the
binary data.

The formatString for the binary commands allows binary data to be collected from or
distributed to a number of variables in a variety of formats. It resembles a regular
expression string, but has a slightly different flavor.

Like the regular expression string, a binary command format string is composed of sets
of two fields – a descriptor for the type of data, followed by an optional count modifier.

The binary command supports several identifiers for converting strings, decimal data,
hex data, or floating point values by 8-bit, 16-bit, or 32-bit data widths. Here are a few
of the commonly used descriptors:

h Converts from binary to/from hexadecimal digits in little-endian order.
binary format h2 34 – returns “C” (0x43).
binary scan "4" h2 x – stores 0x43 in the variable x

by Clif Flynt

Clif Flynt is president
of Noumena Corp.,
which offers training
and consulting serv-
ices for Tcl/Tk and
Internet applications.
He is the author of
Tcl/Tk for Real Pro-
grammers and the
TclTutor instruction
package. He has
been programming
computers since
1970 and a Tcl advo-
cate since 1994.

<clif@cflynt.com>

●

PR

O
G

RA
M

M
IN

G
| C

O
M

PU
TI

N
G

48 Vol. 26, No. 3 ;login:

H Converts from binary to/from Hexadecimal digits in big-endian order.
binary format H2 34 – returns “4” (0x34).
binary scan "4" H2 x – stores 0x34 in the variable x

c Converts an 8-bit value to/from ASCII.
binary format c 0x34 – returns “4” (0x34).
binary scan "4" c x – stores 0x34 in the variable x

s Converts a 16-bit value to/from ASCII in little-endian order.
binary format s 0x3435 – returns “54” (0x350x34).
binary scan "45" s x – stores 13620 (0x3534) in the variable x

S Converts a 16-bit value to/from ASCII in big-endian order.
binary format S 0x3435 – returns “45” (0x350x34).
binary scan "45" S x – stores 13365 (0x3435) in the variable x

i Converts a 32-bit value to/from ASCII in little-endian order.
binary format i 0x34353637 – returns “7654” (0x350x34).
binary scan "45" s x – stores 13620 (0x3534) in the variable x

I Converts a 32-bit value to/from ASCII in big-endian order.
binary format I 0x34353637 – returns “4567” (0x350x34).
binary scan "45" S x – stores 13365 (0x3435) in the variable x

f Converts 32-bit floating point values to/from ASCII.
binary format f 1.0 – returns the binary string “0x0000803f”.
binary scan "\x00\x00\s80\83f" fx – stores 1.0 in the variable x

The optional count can be an integer, to list the exact number of conversions to per-
form, or a *, to use all remaining data.

The format string can be arbitrarily complex, with multiple descriptor/count pairs sepa-
rated by spaces.

Here’s an example of some C code to write a structure to a disk file, and the Tcl code to
read and translate the data:

C Code to Generate a Structure Tcl Code to Read the Structure

#include <stdio.h> # Open the input file, and read data
#include <fcntl.h> set if [open tstStruct r]
main () { set d [read $if]

struct a { close $if
int i;
float f[2]; # scan the binary data into variables.
char s[20];

} aa; binary scan $d “i f2 a*” i f s
FILE *of; # The string data includes any

binary garbage after the NULL byte.
aa.i = 100; # Strip off that junk.
aa.f[0] = 2.5;
aa.f[1] = 3.8; set 0pos [string first [binary format c 0x00] $s]
strcpy(aa.s, "This is a test"); incr 0pos -1

set s [string range $s 0 $0pos]
of = fopen("tstStruct", "w");
fwrite(&aa, sizeof(aa), 1, of); # Display the results
fclose(of); puts $i

} puts $f
puts $s

49June 2001 ;login:

The output from the Tcl code is:

100
2.5 3.79999995232
This is a test

The flip side to this is to write a structure in Tcl, and read it with a C program. This pair
of programs will perform that operation.

Tcl Code to Generate a Structure C Code to Read the Structure

#include <stdio.h>
#include <fcntl.h>
main () {

struct a {
int i;
float f[2];

set str [binary format "i f2 a20" 100
{23.4 56.78} "the other test"] char s[20];

} aa;
set if [open tstStruct2 w]
puts -nonewline $if $st FILE *of;
close $if

of = fopen("tstStruct2", "r");
fread(&aa, sizeof(aa), 1, of);
fclose(of);

printf("I: %d\n", aa.i);
printf("f[0]: %f ", aa.f[0]);
printf("f[1]: %f\n", aa.f[1]);
printf("nstr: %s\n", aa.s);

}

The C program generates this output:

I: 100
f[0]: 23.400000 f[1]: 56.779999
str: the other test

The binary command makes it (relatively) easy to parse the utmp file. All we need to do
is look up the utmp.h include file on our system, examine the structure definition, and
create a format string that the binary command can use to parse each structure in the
utmp file.

On a Linux system, the utmp structure looks like this:

/* The structure describing an entry in the user accounting database. */
struct utmp
{

short int ut_type; /* Type of login. */
pid_t ut_pid; /* Process ID of login process. */
char ut_line[UT_LINESIZE]; /* Devicename. */
char ut_id[4]; /* Inittab ID. */
char ut_user[UT_NAMESIZE]; /* Username. */
char ut_host[UT_HOSTSIZE]; /* Hostname for remote login. */
struct exit_status ut_exit; /* Exit status of a process marked

as DEAD_PROCESS. */
long int ut_session; /* Session ID, used for windowing. */
struct timeval ut_tv; /* Time entry was made. */
int32_t ut_addr_v6[4]; /* Internet address of remote host. */
char __unused[20]; /* Reserved for future use. */

INTRUSION DETECTION ●

●

PR

O
G

RA
M

M
IN

G
| C

O
M

PU
TI

N
G

};

This would lead you to believe that a format string like this should do the trick for
extracting the members of the structure:

type pid line id user host exit session time addr
set f "s i a32 a4 a32 a256 s2 i i2 i4"

In a perfect world, this would work fine.

In this world, certain processors require that an integer start on an integer boundary,
and if a structure declares a single short followed by a long integer, then there will be
two bytes of padding added so that the integer can start on a long-word boundary.

The binary command includes a type descriptor that is not a data type: the @ character.
Where the other type descriptors accept a count modifier, the @ descriptor will accept
an absolute location in the data as a modifier.

This can be used to set the imaginary cursor in the binary data to a long-word bound-
ary, skipping the padding. The @ can also be used to set the cursor location to the start
of each structure in the dataset.

The next trick is that while the utmp structure is allowing for an IPV6 address, only the
first 4 bytes are actually being used today. So, rather than using i4 for the IP address, we
can use c4 (to read 4 bytes of address).

This format string works for Linux:

set st to the start of the structure
start type padding pid line id user host exit session time addr
set f "@$st s @[expr $st+4] i a32 a4 a32 a256 s2 i i2 c4"

This would let us generate a report with all the numbers converted to a printable for-
mat. This is better than nothing (but not a lot better).

The first field is the type of process described in this record. The utmp.h file describes
the meanings of these types. It’s a relatively easy task to cut and paste from that file, edit
a little, and convert the #define lines to a Tcl associative array that we can use as a
lookup table to convert the numeric types to a more human-friendly value:

foreach {name num} {
EMPTY 0 RUN_LVL 1
BOOT_TIME 2 NEW_TIME 3
OLD_TIME 4 INIT_PROCESS 5
LOGIN_PROCESS 6 USER_PROCESS 7
DEAD_PROCESS 8 ACCOUNTING 9} {

set types($num) $name
}

The time stamp can be converted to a more human-friendly form with the Tcl clock
command.

The Tcl clock command has several subcommands that will obtain the current time (in
seconds since the epoch), convert a time in seconds to human-readable format, or con-
vert a human-style time/date into seconds.

This Tcl command will convert the system format time in the first field of the timeval
structure into a date and time in the format MM/DD/YY HH:MM:SS:

clock format [lindex $time 0] -format "%D %r"

50 Vol. 26, No. 3 ;login:

Finally, we don’t want to report on the contents of the utmp file every 10 seconds, or
even every minute. We just want to know what’s happened if it changes.

The Tcl file command also has many subcommands. A useful one for this application is
the file mtime that reports the last modification time for a file.

We can’t set a trigger to go off when a file is modified, but we can loop on the file mtime
value and only report the contents of the utmp file when the modification time changes.

set mtime 0
...

while {[file mtime /var/run/utmp] == $mtime} {
after 10000

}
set mtime [file mtime /var/run/utmp]

The code shown below will generate output resembling this when someone logs in:

In the code below, I’ve assigned the output channel to be stdout for my testing. Since the
first thing a hacker is likely to do after they’ve broken into your system is rewrite utmp
to hide their presence, this monitor might be a good one to combine with the
client/server-based monitors discussed in the previous articles to push the information
off the possibly compromised system and onto a (hopefully) more secure (or at least less
obvious) machine inside your network.

As usual, this code is available online at <http://noucorp.com>.

Grab the type definitions from /usr/include/bits/utmp.h

foreach {name num} {
EMPTY 0 RUN_LVL 1
BOOT_TIME 2 NEW_TIME 3
OLD_TIME 4 INIT_PROCESS 5
LOGIN_PROCESS 6 USER_PROCESS 7
DEAD_PROCESS 8 ACCOUNTING 9 } {

set types($num) $name
}

51June 2001 ;login:

Type Pid Line ID User Host Exit Session Time Addr
DEAD_PROCESS 7 si 0 0 0 04/03/01 07:23:27 PM 0.0.0.0
BOOT_TIME 0 ~ ~~ reboot 0 0 0 04/03/01 07:23:27 PM 0.0.0.0
RUN_LVL 20019 ~ ~~ runlevel 0 0 0 04/03/01 07:23:27 PM 0.0.0.0
DEAD_PROCESS 157 l3 0 0 0 04/03/01 07:24:05 PM 0.0.0.0
DEAD_PROCESS 01 ud 0 0 0 04/03/01 07:24:05 PM 0.0.0.0
USER_PROCESS 702 tty1 1 lclif 0 0 0 04/03/01 07:24:34 PM 0.0.0.0
LOGIN_PROCESS 703 tty2 2 LOGIN 0 0 0 04/03/01 07:24:05 PM 0.0.0.0
LOGIN_PROCESS 704 tty3 3 LOGIN 0 0 0 04/03/01 07:24:05 PM 0.0.0.0
LOGIN_PROCESS 705 tty4 4 LOGIN 0 0 0 04/03/01 07:24:05 PM 0.0.0.0
LOGIN_PROCESS 706 tty5 5 LOGIN 0 0 0 04/03/01 07:24:05 PM 0.0.0.0
LOGIN_PROCESS 707 tty6 6 LOGIN 0 0 0 04/03/01 07:24:05 PM 0.0.0.0
USER_PROCESS 746 pts/2 /2 lclif 0 0 0 04/03/01 07:24:44 PM 0.0.0.0
USER_PROCESS 743 pts/1 /1 lclif 0 0 0 04/03/01 07:24:44 PM 0.0.0.0
USER_PROCESS 744 pts/0 /0 lclif 0 0 0 04/03/01 07:24:44 PM 0.0.0.0
USER_PROCESS 745 pts/3 /3 lclif 0 0 0 04/03/01 07:24:44 PM 0.0.0.0
DEAD_PROCESS 999 pts/5 /5 0 0 0 04/03/01 08:47:04 PM 127. 0.0.1
USER_PROCESS 1163 pts/4 /4 clif vlad 0 0 0 04/03/01 09:17:44 PM 127. 0.0.1

INTRUSION DETECTION ●

●

PR

O
G

RA
M

M
IN

G
| C

O
M

PU
TI

N
G

http://noucorp.com

We'll use $zero to trim trailing zeros from the data.
set zero [binary format c 0x00]

$reportFmt defines the widths of the columns in the report
set reportFmt {%-16s %6s %12s %20s %-12s %6s %5s %7s %21s %16s}

set output stdout

set mtime 0
while {1} {

while {[file mtime /var/run/utmp] == $mtime} {
after 10000

}
set mtime [file mtime /var/run/utmp]

Display a header
puts [format $reportFmt Type Pid Line ID User Host Exit Session Time Addr]

Open read and close the utmp file
set if [open /var/run/utmp r]
set d [read $if]
close $if

Save the length of the data buffer for future use.
set utmpLen [string length $d]

This is the start of the utmp structure being examined
set start 0

As long as there is data to parse, parse it and step to the
next structure.

while {$start < $utmpLen} {
start of struct type padding pid line id user host exit\
session time addr
set fmt "@$start s @[expr $start +4] i a32 a4 a32 a256 s2 \

i i2 c4"
binary scan $d $fmt type pid line id user host exit session time addr

Trim trailing zeros
foreach v {line id user host} {

set $v [string trim [set $v] $zero]
}

puts $output [format $reportFmt \
$types($type) $pid $line $id $user $host $exit $session \
[clock format [lindex $time 0] -format "%D %r"] [join $addr ".']]

incr start 384
}

}

52 Vol. 26, No. 3 ;login:

