®
® ®
THE MAGAZINE OF USENIX & SAGE
, ‘ April 2001 e volume 26 number 2

inside:

SYSADMIN

Introducing Peep: The Network Auralizer

USENIX & SAGE

The Advanced Computing Systems Association &
The System Administrators Guild

58

by Michael Gilfix

Michael Gilfix is com-
pleting his degrees in
electrical engineering
and computer science
at Tufts University.

<mgilfix@eecs.tufts.edu>

introducing peep:
the network
auralizer

Peep is a tool which provides an alternative to current network monitoring
solutions. Peep creates an audio representation of network activity using
natural sounds, providing large amounts of information in a compact, non-
intrusive, and perhaps soothing form. Use of Peep to monitor your network
is based on the concept of normalcy, where your network is functioning cor-
rectly if Peep “sounds right.”

Why Peep?

Even though a good portion of our job as system administrators is to be as knowledge-
able as possible about the state of our network at any given instant, it is difficult to use
current approaches to live monitoring while completing other tasks. In general, one
must intermittently suspend other work to check the monitor, which has profound neg-
ative consequences for accomplishing work efficiently, or perhaps wait (or pray?) for an
email or page when something goes wrong.

These approaches are highly problem-centered and provide mainly negative reinforce-
ment. Most tools are very limited in the domain they can address and report only when
they discover a problem. In the meantime, the administrator is left in the dark, hoping
the tool will do its job when the crucial time comes. These monitors do not regularly
inform the administrator when the network is functioning well.

Peep’s approach is to generate a realtime sonic representation of network state using
natural sounds. Peep’s audio output is meant to play in the background as a sort of
white noise. With Peep, an administrator can keep tabs on how well the network is per-
forming and what sort of activity is occurring at all times, without interrupting other
work. In addition, Peep leaves all the subtleties of interpretation to the listener, thereby
avoiding limitations on the kind of problem domain addressed.

Using audio to interface with the user brings several major benefits: it allows us to
exploit our human instinct to notice deviations with little effort, to determine what
“sounds right,” and to discern singular important sounds from a collection of many
sounds. These abilities are exercised continuously, with little or no conscious effort.
Since computer interfaces mainly require the visual senses, using the audio senses to
perform this unconscious processing does not interfere with our ability to do other
work.

An audio interface also allows us to take advantage of our ability to do abstract process-
ing. Instead of attempting the difficult and sensitive problem of determining when a
network crisis has occurred or is about to occur, Peep provides contextual, continuous
sound information and leaves interpretation to the listener. Decisions are then based
not only on the quantitative measure of things, but also the relative amount and absence
of things.

Yeah. But Won‘t That Get Annoying?

Nope. Most people envision audio tools as spewing some sequence of beeps or sounds
that eventually annoy the listener and do more harm than good. Past approaches to
audio monitoring have made use of beeps, midi, and singular sound samples to alert the
user. These approaches, however, are greatly limited by what they can represent and still
sound pleasing to the ear. For music to remain pleasant, one must limit one’s represen-

Vol. 26, No. 2 ;login:

tations to a limited number of relatively pleasing harmonic combinations. Singular and The idea is that back grou nd

overly striking sounds are another dead-end, since we cannot tolerate these sounds in)
large measures (think ICQ!). sounds should be soothing

Natural sounds have an advantage over these approaches because they seem to “occur while the network is
together” and “sound right” in virtually any combination. For example, birds, when

singing in nature, have no coordination and yet they are still agreeable to listen to. Nat- functioning normally and

ulﬁal sounds also offer another advantage over conveptional sounds - the}.l have person- annoying when an

ality. We can map natural sounds to network events in the manner in which we think of

them, making our representations more expressive. administrator should be
Audio Representation inspired into action.

Since audio representation is such an important part of making an audio tool success-
ful, Professor Alva Couch and I spent a substantial amount of time considering how to
best represent network occurrences. Sound representation in Peep is divided into three
basic categories: events in networks are things that occur once, naturally represented by
a single peep or chirp; network states, or ongoing events, are represented by changing
the type, volume, or stereo position of an ongoing background sound; while heartbeats
represent the existence or frequency of occurrence of an ongoing network state by play-
ing a sound at varying intervals, such as by changing the frequency of cricket chirps.

Peep represents discrete events by playing a single natural sound every time the event
occurs, such as a bird chirp or a woodpecker’s peck. These sounds are staccato in nature
and easily distinguishable by the listener. We noted that certain events tend to occur
together and found it convenient to assign them complementary sounds. While moni-
toring incoming and outgoing email on our network, we perceived that the two events
were often grouped together, since both types of email were usually transferred in a sin-
gle session between mail servers. To better represent this coupling between incoming
and outgoing email events and make the representation sound more natural, we used
the sounds of two conversing birds. Thus, a flood of incoming and outgoing email
sounds like a sequence of call and response, making the sound “imagery” both more
faithful to our network’s behavior, as well as more pleasing to the ear.

State sounds correspond to measurements or weights describing the magnitude of
something, such as the load average or the number of users on a given machine. Unlike
events, which are only played when Peep is notified of them, Peep plays state informa-
tion constantly and need only be signaled when state sounds should change. Peep repre-
sents a state with a continuous stream of background sounds, like a waterfall or wind.
Each state is internally identified as a single number measurement, scaled to vary from
extremely quiet to loud and obnoxious. The idea is that background sounds should be
soothing while the network is functioning normally and annoying when an administra-
tor should be inspired into action.

Heartbeats are sounds that occur at constant intervals, analogous to crickets chirping at
night. A common folk tale is that one can tell the temperature from the frequency of
cricket chirps; likewise we can represent network load as a similar function. Intermittent
chirps might mean low load, while a chorus might mean high load. Heartbeats can also
report results of an intermittent check (or ping) to see if a given machine, device, or
server is functioning properly.

Peep Architecture

Peep is based on a producer/consumer architecture where many client producers
around the network gather information and send it to a few, centralized server con-
sumers for playback. Configuration information is stored in a single configuration file

April 2001 ;login: PEEP

SYSADMIN | PROGRAMMING | OPEN SOURCE | COMPUTING

59

60

Perhaps the most difficult part
of this process is choosing

which sounds you prefer.

that is replicated for clients and servers around the network. Clients alert servers to net-
work events via short UDP messages, keeping overhead to a minimum. This architec-
ture allows for status reports from any number of network devices or nodes, as well as a
great deal of flexibility when structuring a given network implementation.

To ease the management of Peep’s distributed architecture, Peep uses a mechanism
called auto-discovery and leasing. Upon startup, each client and server broadcasts its
existence to the network once and the appropriate peers automatically “discover” each
other. Because of the statelessness of UDP, a mechanism is required to ensure that
clients do not waste network resources by sending packets to non-functional servers.
This is accomplished through leasing. During their initial communication, the server
and client exchange a lease time. Then, at intervals before the lease expires, the client
checks in with the server and renews the lease. An expired lease indicates that a server is
no longer functioning, and thus the client ceases sending its network information.

Peep’s auto-discovery and leasing mechanism uses a domain-class concept to group
clients and servers together. This class information is specified in the single configura-
tion file shared by servers and clients. During the startup, each server or client broad-
casts only to the subnets designated by its respective classes, and announces to those
subnets which classes it belongs to. Following the initial broadcast, a list of hosts is
maintained on both sides and all further communications are direct. Both clients and
servers can belong to multiple classes at the same time, and clients can communicate
with many servers concurrently.

Getting Peep Up and Running in Your Network

Integrating Peep with your network is a four-step process: download the source code
and sound repository package from the Sourceforge site, build the server, configure your
server and choose your sounds, and deploy the clients throughout your network.

The process of configuring servers and clients is relatively easy. An example configura-
tion file comes with the Peep distribution that requires only a little modification to get
Peep up and running within your network. Ample documentation is also provided with
the Peep distribution in HTML format or can be obtained at <http://peep.sourceforge.
net/docs/peep-doc.html>.

Perhaps the most difficult part of this process is choosing which sounds you prefer.
KeyTest, a utility provided with Peep, is used for this exact purpose. KeyTest maps differ-
ent keys to different events and states, and each keystroke plays the corresponding
events or state on the server. This allows the user to experiment with changing stereo
location, state volumes, and event priorities. My suggestion is to load all the sounds into
the server and literally “play” the server to see how they all might sound together.
KeyTest will support up to 24 different event sounds and 10 different state sounds at a
given time. As this process can provide much amusement, it tends to be the lengthier
part of Peep’s setup time.

The last step is to deploy the clients provided with Peep. Currently, two clients are pro-
vided with the Peep distribution: Uptime and LogParser. Uptime reads state informa-
tion from the UNIX utility “uptime,” as its name would suggest, and reports a scaled
measurement of the machine load and number of users to the server. LogParser, a real-
time log parsing utility similar to Swatch, scans logs as data is appended and performs
regular-expression pattern matching to extract event data. LogParser is a rather flexible

tool, and the patterns it matches can be entirely customized in the Peep configuration
file.

Vol. 26, No. 2 ;login:

http://peep.sourceforge

In addition, if the utilities provided with Peep do not meet your needs, all of the auto-
discovery and leasing part of the Peep protocol has been encapsulated nicely within two
Perl libraries provided with the Peep distribution. Example code exists in the documen-
tation to help you write your own utilities quickly and efficiently.

Some Known Problems and Where We Are Going

One of the biggest problems with Peep is training your ear to recognize the intricacies of
different network occurrences and make a complex diagnosis. This post appeared on
slashdot shortly after the LISA 2000 conference:

Since 'm on call, 'm looking forward to my first conversation with a monitoring guy
after this is in place . . .

MG: “Yeah, there’s a problem with system XYZ ...

Me: “How so?”

MG: “Well, usually it goes ‘ree-ree-tinktinktinktink, you know? But right now it’s
going ‘ree-ree-tinktink-bong-bong-tink’!”

Me: “Is that ‘bong’ like a doorbell chime, or more like a big Chinese gong?”

MG: “In between but more like a gong, I think.”

Me: “Well, shit.”

By nakaduct on slashdot — mike.muise@digital.com

But this example is part and parcel of dealing with inexperienced users of any system.
Any system requires a user to become trained and “conditioned” to its proper use before
attaining maximum benefit. In general, user feedback has been positive, and admins
have reported that they have detected a large range of different behavior using Peep,
most notably email spam. So, although training your ear may be of some concern, it has
not been a problem for past users.

We are working on adding a recording feature to Peep that will save past events in a
playback file for review. Currently, if you think you have heard some sort of anomaly,
there is no way to go back and reevaluate the sound. A playback feature would allow
admins to trade playback files amongst themselves to get second opinions.

We are also exploring visual playback methods that will provide visuals to network
events similar to what a graphic equalizer does for sound. This will allow for a visual
analysis similar to how Peep works, where a network is functioning correctly if the
graphic just “looks right.”

Summary

Whether we know it or not, we all have the ability to utilize our “peripheral” senses in
doing our day-to-day work. Too many of us can instantly recognize the sound of a bad
fan or a hard disk crash. We did not consciously study this or take a course in it. We
learned it because these sounds form an integral part of our daily work environment. If
we can add Peep to this environment, it is only a matter of time until we react to a
cheerful chirp with the sure knowledge that our servers are working and that we can rest
easy.

Obtaining Peep

Peep is freely available at <http://www.sourceforge.net/projects/peep/>. If you want to find
out what this tool might sound like, there is an mp3 demo available on the home page
under the introduction section.

“Well, usually it goes ‘ree-
ree-tinktinktinktink,” you
know? But right now it's
going ‘ree-ree-tinktink-bong-

bong-tink'!*

April 2001 ;login: PEEP

SYSADMIN | PROGRAMMING | OPEN SOURCE | COMPUTING

61

http://www.sourceforge.net/projects/peep/

